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Abstract
We have implemented a two-stage language, Paradise, for building
reusable components which are used to price financial products.
Paradise is embedded in Haskell and makes heavy use of type-class
based overloading, allowing the second stage to be compiled into a
variety of backend platforms.

Paradise has enabled us to begin moving away from implemen-
tation directly in monolithic Excel spreadsheets and towards a more
modular and retargetable approach.

Categories and Subject Descriptors D.2.13 [Reusable Software]:
Domain engineering

General Terms Languages

1. Introduction
Our group within Credit Suisse, the Global Modelling and Analyt-
ics Group (GMAG), is responsible for developing the quantitative
models that are used to value financial products across the Securi-
ties Trading division of the bank. Typically, these models are im-
plemented in C++ for efficiency reasons. Their use falls into two
broad categories: valuation and pricing. The former is concerned
with tracking the value of transactions that are already on the bank’s
trading books, and is typically done in IT systems which calculate
aggregate values and risk across an entire portfolio. The latter ac-
tivity is carried out by sales and trading staff in a course of their
day-to-day work; they need to be able to quickly value proposed
transactions and they require user-friendly tools that integrate well
with their normal workflow to do so.

Historically, such tools, known as pricing models, have been
delivered by manually constructing Excel spreadsheets which call
the C++ code packaged as Excel addins. From the point of view of
our users, this is a convenient platform as they are typically already
familiar with it, and it is easy to make minor local modifications, or
to use empty parts of the worksheet as scratch space for their own
calculations.

In some ways, Excel is also a convenient development platform
for GMAG: it is its own integrated development environment, and
there is no compile-run cycle to go through when making changes.
Over a period of many years, GMAG has developed a large set
of addins to augment the built-in functionality of Excel, as well
as specialist financial calculations (e.g., getting a discount curve),
a variety of general-purpose data structures and routines have been
added, including support for arrays, relational algebra, higher-order
and anonymous functions, and combinators such as map and fold.

However, this approach also has significant pitfalls. Excel
spreadsheets are essentially binaries and therefore cannot be placed
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under any effective version control. They also lack any reasonable
notion of modularity, and thus re-use of pieces of a spreadsheet
is accomplished with copy-and-paste, with all the obvious mainte-
nance headaches that this entails.

We are therefore replacing this approach with a domain-specific
language for developing pricing models, which we have named
Paradise. It is embedded in Haskell, and makes heavy use of various
features such as type classes. Using Paradise allows pricing models
to be built up from reusable components that can be shared between
many different models.

Paradise programs are not directly executed. Instead, they are
compiled into an appropriate implementation platform in a manner
similar to Pan (Elliott et al. 2003). Currently, our target platforms
are Excel spreadsheets and .NET applications. In future, we may
target yet more diverse platforms such as web browsers.

2. The Paradise Language
Paradise is actually two separate languages built around the com-
mon model-view-controller architectural pattern. The first language
implements the model and is used to describe the calculations and
dataflow of the pricing model. The second implements the view,
describing the layout of the user interface. The controller is imple-
mented once for each backend and does not need to be customised
for individual pricing models.

The model and view are connected by defining a Haskell
datatype which describes the data that could appear in the user
interface.

Here is a simple example (real code often has 20-100 fields
instead of three) of a Paradise program:
data Adder = Adder {

x :: E Double,
y :: E Double,
z :: E Double }

adder = do
x <- input 2
y <- input 3
z <- output (x+y)
return Adder{..}

instance Viewable Adder where
view Adder{..} = grid [[label "x", view x],

[label "y", view y],
[label "x+y", view z]]

Here, the datatype Adder defines a type of a component in which
x, y and z are all values that could be presented to the user. The
model adder constructs an Adder in which x and y are input cells,
i.e., something that the user is allowed to change, with initial values
of 2 and 3 respectively, and z is an output cell, i.e., something which
is computed and presented to the user (but not directly changable),
whose value tracks the sum of x and y. The construction must be
done inside a state monad so that we can assign unique (internal)
identifiers to different cells, as the user will expect to be able to
interact with them separately.

Finally, we instantiate the type class Viewable and the function
view of type Adder → View to define the default view for any
Adder component; all of x, y and z are presented to the user with
appropriate labels. We could also have implemented other, non-
default views by defining another function of type Adder → View;



we might want alternate layouts or simplified versions that omitted
certain cells.

One piece of syntax that may be unfamiliar in this Haskell
code is Adder{..}. This provides a shorthand for the rather tedious
process of explicitly listing all the fields in the Adder record; in
this simple example this would just have been a matter of writing
Adder{x = x, y = y, z = z}, but with bigger components with
more descriptive field names, this quickly becomes a real nuisance.
The {..} syntax can be used in both expression and pattern context:
in expression context, it defines a record value by matching up the
field names with the current set of variables in scope, and in pattern
context, it brings all the fields into scope with their own names.

This extension to GHC was originally implemented by us for
use in Paradise, but it has also been adopted by the GHC developers
and will be available in GHC 6.10 using the RecordWildCards
language extension.

The final point of note in this example is the types of x, y and
z. Recall that Paradise programs are compiled to specific back-
ends such as an Excel spreadsheet or a .NET application. This is
achieved by making Paradise a staged language. In the first stage,
a Paradise program is compiled and run as a normal Haskell pro-
gram. The execution of this first stage generates the second stage,
(i.e., the spreadsheet or .NET application) that the end-user will
actually interact with.

Since x and y are designated as input cells, their values will
not be available until the second stage. So x + y cannot simply be
implemented as the normal Haskell + operator since that is only
available at the first stage. Instead, it has to become the + of the
target platform. We achieve this by taking advantage of the fact
that + in Haskell is actually a member of the Num type class,
which allows us to substitute our own implementation if we also
define our own datatype. This is where the E comes from in the
types of x, y, and z; values of type E a are actually abstract syntax
trees that will represent computations that can be done in the second
stage and produce a value of type a at that time. So x is a Double,
but one that will only be available in the second stage. Although
the actual Haskell Double type is not available at that point, some
corresponding run-time type will be.

More complicated components can be constructed by composi-
tion of simpler ones. For example, we could plug the adder defined
above into something bigger by defining one element to have type
Adder and calling the adder function to construct that element.

3. Paradise and Haskell
This section describes in more detail how Paradise takes advantage
of being embedded in Haskell.

When defining a typed domain specific language you have to
define a type system for the DSL as well as the various language
constructs. For an embedded DSL it is rare that the type system
of the host language is an exact match for the type system of
the embedded language. Using Haskell type classes it is possible
to customize the embedded type system to a large degree. For
example, what is the type of the input function in the example
above? It takes an initial value and returns an input of the same type
as the initial value in some monad (A). The initial value can itself
be “dynamic”, in which case the input value will track changes
in this initial value until the user types something into the input
cell itself, so the type is E a → A (E a). But as is typical for an
embedded language this type is too general. It is not the case that
you can have an input of any type E a; only certain types make
sense. In the case of Excel the only types you can have in an
input cell are Double, String, and Bool. So the actual typing is
input :: (CellInput a) ⇒ E a → A (E a), where CellInput is a
class that restricts a to the types that make sense.

3.1 Overloading
We have already mentioned Paradise’s use of overloading. As well
as overloading the numeric operators, Haskell allows us to over-
load numeric literals. Therefore, the literals 2 and 3 in our adder
example also have E types, because the type of input forces them
to. In addition, the expression x + 1 might be an expression that
runs at either the first or the second stage depending on the type of
x. Indeed, if x is suitably polymorphic, then x + 1 will be too.

We also wanted to be able to overload string literals, but in
Haskell such literals are always of type String. We therefore ex-
tended GHC slightly to remedy this limitation. The extension,
which has been released in GHC version 6.8 with the name
OverloadedStrings, adds an IsString class and changes string lit-
erals to have type IsString a ⇒ a. The IsString class has a single
method, fromString :: String → a, which is analogous to the
fromInteger :: Integer → a method of Num that underlies integral
literal overloading. This extension is not only useful for DSELs,
but also for libraries like ByteString which implement a more ef-
ficient string type where you still want to be able to use ordinary
string literals.

Our language also supports functions which will run at the sec-
ond stage. This facility means that our own versions of standard
higher-order combinators such as map, fold, etc., are also avail-
able at the second stage. (However, Haskell lists are not available
then. Instead we provide an array type that fulfils a similar pur-
pose, but is strict.) Of course, we need a way for users to actually
write such functions in their code. The approach we have taken is
based on higher-order abstract syntax (Pfenning and Elliott 1988;
Kamin 1996); the users write normal Haskell functions whose ar-
gument and return types are E types. Since the E type is actually
implemented at the first stage by an abstract syntax tree, we can
instantiate the arguments with fresh variables. Doing this gives us a
representation of the result in terms of those variables, and thus an
explicit representation of the function. This technique relies on the
E type being abstract, so that users cannot write functions which
actually inspect its representation (in any case, such “functions”
would not be implementable at the second stage).

3.2 Phantom Types
Paradise uses phantom types (Leijen and Meijer 1999) to imple-
ment the E type. Although the types that we expose to users are
safe in the sense that they cannot use an E Int where an E String is
expected, internally the type E a is implemented by the unparame-
terised type, Exp. It is therefore incumbent on us, as the developers
of Paradise, to make sure that when we expose operations to the
user, we do so with the correct types.

An alternative approach would have been to use GADTs (Pey-
ton Jones et al. 2006) to implement the E type. This would have
allowed us to maintain type safety in our internal implementation
as well. We chose not to do this partly because GADTs are rel-
atively new and have yet to be standardised, and partly because
it would have prevented us, as the Paradise developers, from tak-
ing various implementation shortcuts that, while somewhat unsafe,
were very convenient. For example, the notion of “type” in Excel is
much more limited than in Paradise, and there are therefore various
coercions in Paradise that are no-ops in Excel. Late in the backend,
we want to drop these coercions, but if we were using GADTs we
would have to use a different representation when we did so. The
unsafeness is not exposed to users unless we make a mistake.

3.3 GHC extensions
We make significant use of GHC extensions to the Haskell 98 lan-
guage. In most cases this is simply for convenience of implemen-
tation and is not crucial to the design of the Paradise language; for
example, we go beyond the normal Haskell 98 rules for class con-



texts, and we make heavy use of “convenience” features such as
scoped type variables, pattern guards, and empty data declarations.
We also use rank-2 types, multi-parameter type classes with func-
tional dependencies, and GADTs.

By default, Paradise programs make use of the two extensions
that we added ourselves and have already mentioned (overloaded
strings and record wildcards), as well as the extended defaulting
rules provided by GHC. We also use the Data.Typeable type class
so that the implementation can use runtime typecasts in one partic-
ular location, and we use a GHC extension to allow users to auto-
matically derive instances of this class when required. An alterna-
tive to Data.Typeable would have been to have used the type-safe
references provided by the ST monad, but using these references
would have involved “infecting” large chunks of user code with the
phantom type parameter s that ST requires.

In some cases our users have also found it convenient to make
use of Template Haskell (Sheard and Peyton Jones 2002) to sim-
plify the production of boilerplate code, although where possible
we try to provide abstractions that avoid the need for Template
Haskell, which we tend to regard as a “last resort.”

4. Discussion
4.1 Overloading
Without type classes, Paradise would be an unwieldy language—
for example, we would need four different syntactic forms for
literals and operators over each of the numeric types we support
(Int and Double at the first stage, and their E variants at the second
stage)—and it is doubtful that it would have been designed in the
same way.

However, the overloading is still more limited than we would
like, even after our addition of overloaded string literals. For exam-
ple, we cannot overload the if . . . then . . . else operator, nor can we
overload pattern-matching (nor allow the user access to algebraic
datatypes in any other way). The same applies to list syntax (both
literals and comprehensions). Our use of do-notation is also limited
by the difficulty of using restricted monads in Haskell.

Of course, the full power of Haskell is available at the first stage,
which can be used in constructing the structure of the component.
The restrictions are only on the second stage, where the actual
computations done by the component occur.

Even with numeric overloading, we run into some problems
with the standard Haskell type class hierarchy. This makes Eq a
superclass of Num, i.e., all numbers are expected to have an equality
operator (==) that returns Bool. Unfortunately, we cannot provide
a correct implementation of such an operator for a stage 2 type
as their equality simply cannot be decided at Haskell runtime. In
theory, any library function that is overloaded on Num might make
use of (==), but luckily, in practice we have found that very few
do.

There are a couple of different ways that this problem could be
solved. Firstly, the Eq superclass constraint could be removed. This
would be slightly less convenient for “normal” users of Haskell,
since they would no longer be able to rely on (==) existing for
all numbers, but it would mean that the constraint would become
explicit in the signature of any functions that really did need this
operator, avoiding the risk of runtime misbehaviour. Removing the
Eq (and Show) superclass constraint for Num would also make
sense from a theoretical point of view. There are numeric types,
e.g., constructive real numbers, for which there is no decidable
equality, so having an Eq superclass makes no sense.

An alternative would be to introduce boolean overloading into
the standard library, so that all functions like (==) were over-
loaded on the return type as well as on the argument types, and con-
structs such as if . . . then . . . else were also overloaded. This would

be ideal for us since even functions that required equality, would
then work “out of the box” in our setting. However the extra over-
loading would also cause inconvenience for normal users because
more types would become ambiguous and require a type signature
to fix them. It would also require Eq to become a multi-parameter
type class with one parameter for the type being compared and one
for the result, as well as introducing a type class for boolean types.

The Haskell numerical class hierarchy has other problems sim-
ilar to Eq, e.g., toInteger in Integral and and properFraction in
RealFrac.

We have opted for using our own multiparameter Eq class, but
otherwise use the standard prelude. GHC allows you to replace the
prelude, but we decided that maintaining our own prelude was too
much of a burden.

4.2 Naming
One issue with our approach is that the variables in a Paradise
program are all native Haskell variables, and thus their names are
only available to GHC and not to our generator that produces the
second stage program. This can make debugging the second stage
something of a challenge. This problem has been ameliorated by
using a preprocessor that inserts calls to an annotation function,
making the names available to our generator as well. An alternative
would have been to use Template Haskell, but this would have
meant wrapping large blocks of user code with quotations, which
we were reluctant to do.

4.3 Performance
Generally speaking, the performance of GHC-compiled code has
been adequate for our needs, although we have had to take some
care in a few parts of our implementation to ensure that our data
structures “stream”, i.e., that the computations are lazy enough that
we do not need to construct all of a data structure before we can
start writing it to file. Without this, it is possible for the first stage
to exhaust all available memory, and we observed this with some
large models. Note that in general, the two-level nature of Paradise
makes us somewhat decoupled from actual Haskell performance;
only developers using Paradise run Haskell code, whereas the end
users run what the Haskell code generated.

One significant issue occurs if we write something like let z =
x + y, where x and y have E types, and then use z in multiple
places. In the Haskell world, this produces a structure in which z is
shared, and on our target platforms we can implement such sharing
by defining a temporary. However, since sharing in Haskell is not
observable (and not even guaranteed by the language standard,
though all implementations do it), we cannot easily convert from
one to the other. This problem was also encountered in Lava (Bjesse
et al. 1998), and two solutions were proposed: one was to use a
monad to regain sharing and the other was to introduce impure
observable sharing. In our setting, since we construct components
inside a state monad in any case, we simply introduce a combinator
inside the monad that allows users to specify explicit sharing, and
recommend that they use that combinator in place of let.

Any sharing that is lost by using let will be recovered by the
Paradise implementation by doing common subexpressions elimi-
nation; the drawback of using this approach alone is that because
we cannot observe the sharing, the intermediate data structures can
get huge before CSE is able to collapse them.

4.4 Recruitment
One consideration when embarking on a functional programming
project is whether you expect to be able to hire functional pro-
grammers of a high standard. Clearly, the number of functional
programmers looking for commercial work is quite small and so
one might expect good ones to be hard to find. Our experience



has been very positive in this regard. Our willingness to embrace
academic research and the potential to work on interesting prob-
lems has attracted some extremely capable Haskell programmers.
We have also found that the “average” Haskell programmer we in-
terview tends to be of a much higher standard than the “average”
C++ programmer.

4.5 Organisational Acceptance
Most organisations are fairly conservative in adopting technologies
that are new to them, and usually want to see widespread use (or
anticipated use) of that technology in other, similar, organisations.
So one might find it surprising that we embarked on a Haskell
project when (to our knowledge at the time) no-one else in the
finance sector was doing so. Our initial adoption of functional
programming happened almost by accident. We have a long history
of using Microsoft Excel spreadsheets to “glue together” code
written as C++ addin functions. This approach has served us quite
well in some regards, particularly in terms of being able to build
new pricing models with very quick turnaround. It is, however,
rather weak when considered in the context of what can be done in
a programming language. In particular, change control, static type
checking, abstraction and reuse are almost completely lacking.

In 2005, we set about trying to enhance the spreadsheet envi-
ronment with various tools to address these deficiencies, and since
the spreadsheet is essentially a pure functional programming envi-
ronment, we naturally looked to functional programming languages
for inspiration. This led to the integration of higher-order functions
into the Excel environment, but through fairly unnatural techniques
(since they had to be implemented as Excel addins). At the same
time, we recognised our lack of expertise in the field so we chose
to hire some functional programmers. At this point, we were not
expecting to use any particular functional language, but we wanted
to bring the right perspective to the problem.

Our new hires certainly enabled us to make the spreadsheet pro-
gramming environment better, but also helped highlight how it was
still fundamentally lacking. We would never get static type check-
ing, simple change control, and lightweight abstraction in a spread-
sheet environment. A simple proof-of-concept of what would be-
come Paradise convinced us to proceed with the project. The pro-
totype enabled us to generate spreadsheets from clear, concise
Haskell code, and held the promise of targeting other UI platforms
in the future. This coincided with an increased focus on building
easier-to-use pricing models from our sales and trading department,
which led us to sponsor the project.

4.6 User Feedback
Some comments from modellers using Paradise:

In my experience, the static type checking along with stage-1 run-
time checks mean that, most of the time, if the model compiles,
it works. However, this is hampered by the lack of type safety in
Excel and our COM-based analytics. In particular, the computer-
generated models aggressively expose quirks, inconsistencies, and
edge cases in our analytics which would normally be hand-wired
into spreadsheets. These are bugs we have either learned to avoid
or have never discovered.

Positive experience:
1. Code reusability, templating possibility, static type-checking,

and source code control are great features to have, compared to
the traditional way of developing Excel models.

2. I also like the fact that we can exploit Haskell’s power dur-
ing compile time to easily generate large but structured compo-
nents.

3. Common subexpression elimination is very nice.

4. Overall, learning and using Paradise/Haskell have been a very
enjoyable experience to me.

Things that perhaps could still be improved:
1. Doing any change to the model (if done through Paradise) will

always require an extensive test, even if the change is a minor
one.

2. The problem above is made severe by the fact that Paradise
and the libraries developed by modellers still undergo a lot of
changes.

4.7 Impact
Over the space of a year and a half, we developed the core of Par-
adise and successfully completed some challenging pilot projects.
This involved getting modellers in our group to work in Haskell.
Most modellers have fairly limited programming experience and
usually no knowledge of functional programming. While we expe-
rienced a fair degree of scepticism, generally we have found mod-
ellers to be quite accepting of Haskell, and developing in Haskell
itself has not presented any significant issues. Our main issues have
revolved around two areas—firstly, getting the combinators in our
Domain Specific Language right, and secondly, being too opti-
mistic about what can realistically be implemented in Excel with
acceptable performance.

The combinators have evolved considerably, and continue to do
so, which is something that must be expected with any Domain
Specific Language. Dealing with the limitations of Excel has been
a lot harder. When one adopts a generative approach it is tempting
to generate arbitrarily complex code, but we have to exercise care
to ensure that we generate Excel constructs that perform well, and
sometimes we have to sacrifice generality for performance.

We now have a reasonable number of pricing models imple-
mented using Paradise, and there is a large degree of re-use be-
tween them. When one wants to build a new pricing model which
has many similar features to existing models, we can usually do
these pretty quickly, since we can re-use code. However, when we
want to make a very quick, simple change to an existing model, the
turnaround time is longer than using Excel directly. This is prob-
ably the key trade-off between a dynamic environment like Excel
and a more traditional programming environment.
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