
Replication Strategies for Reliable Decentralised Storage

Matthew Leslie1,2, Jim Davies1, and Todd Huffman2

1Oxford University Computing Laboratory and
2Oxford University Department of Physics

mleslie@fnal.gov, jdavies@comlab.ox.ac.uk,
t.huffman1@physics.ox.ac.uk

Abstract

Distributed hash tables (DHTs) can be used as the ba-
sis of a resilient lookup service in unstable environments:
local routing tables are updated to reflected changes in the
network; efficient routing can be maintained in the face of
participant node failures. This fault-tolerance is an impor-
tant aspect of modern, decentralised data storage solutions.
In architectures that employ DHTs, the choice of algorithm
for data replication and maintenance can have a significant
impact upon performance and reliability.

This paper presents a comparative analysis of replica-
tion algorithms for architectures based upon a specific de-
sign of DHT. It presents also a novel maintenance algorithm
for dynamic replica placement, and considers the reliabil-
ity of the resulting designs at the system level. The per-
formance of the algorithms is examined using simulation
techniques; significant differences are identified in terms of
communication costs and latency.

1. Introduction

Distributed Hash Tables (DHTs) can be used to provide
scalable, fault-tolerant key-based routing. Each lookup can
be routed reliably to an appropriate node, which will re-
turn the required data; in most systems, the worst-case time
complexity for node location is logarithmic in the number
of nodes.

Several systems employing DHTs have been developed,
notably: PAST, Tapestry, CAN, Kademlia, and Chord [22,
26, 20, 12, 15]. The combination of resilience and efficiency
has led to the adoption of these systems in decentralised
storage solutions: examples include CFS, OceanStore, Ivy,
and Glacier [6, 10, 17, 9].

All of these systems use replication to provide reliability,
but they employ a variety of different strategies for place-
ment and maintenance. In this paper, we will examine sev-
eral of these strategies, and show that the choice of strategy
can have a significant impact upon reliability and perfor-
mance.

In Sections 2 and 3, we describe two replication
algorithms—DHash [3] and dynamic replication [23]—in
the context of the Chord DHT [15]. We examine the short-
comings of dynamic replication, identify a solution, and
propose a variety of placement strategies.

In Section 5, we compare the reliability of different
strategies at the level of a complete system: failure is syn-
onymous with the loss of every copy of any item of data.
In Sections 7 and 8, we use simulation techniques to com-
pare the impact of replication strategy upon fetch latency
and bandwidth usage.

2. DHash replication

In Chord, nodes and data items are assigned keys be-
tween zero and some maximumK, corresponding to posi-
tions on a ring. A nodeowns, or is responsible for, data that
it is the first clockwise successor of. Each node maintains
knowledge of its immediate clockwise neighbours, called
its successors, and several other nodes at fractional dis-
tances around the ring from it, called itsfingers.

The DHash approach [3] combines the placement strat-
egy proposed for Chord with a maintenance algorithm sug-
gested by Cates [4]; this combination is used by the DHash
storage system and the Ivy File System [17].

Replicas of a data item are placed (only) on ther succes-
sors of the node responsible for that item’s key. To main-
tain this placement pattern in the face of nodes joining and
leaving the system (nodechurn), there are two maintenance

1

protocols: thelocal andglobalalgorithms; these prevent the
number of replicas of any object from either dropping too
low or rising too high.

Local MaintenanceEach node sends a message to itsr suc-
cessors, listing the key range it is responsible for. These
nodes then synchronise their databases so that all items in
this range are stored on both the root node and its suc-
cessors. (Methods for database synchronisation, such as
Merkle Tree hashing [13], are discussed in [4].)

To repair the overlay, the local algorithm runs twice: in
the first pass, the items in the key range of the root node are
identified and gathered at the root note; in the second, repli-
cas of these items are distributed to the successor nodes.

Global MaintenanceA node periodically checks the keys
of the items in its database to see if it stores any item that
it is no longer responsible for. To do this, it looks up the
owner of each key it stores, and checks the successor list of
that owner. If it is withinr hops of the node, then it will be
one of the firstr nodes in the successor list. If its ID is not
in this list, the node is no longer responsible for keeping a
replica of this item. In this case, the item is offered to the
current owner, after which it may safely be deleted.

3. Dynamic Replication

This approach was proposed initially by Waldvogel et
al. [23]; a similar method is used by Glacier [9] to place
file fragments. The essential feature is the use of analloca-
tion functionfor replica placement: for an item with keyd,
the replicas are placed at locations determined byh(m, d),
wherem is the index of that replica. Replicas of each item
are placed at locations with indexes between zero andr−1,
wherer is the desired replication factor. The node responsi-
ble for h(0, d) is called theownerof d, and the nodes with
replicas are called thereplica groupfor that item.

The use of an allocation function helps alleviate the
lookup bottleneck associated with DHash replication.
DHash replication requires that all lookups for a popular
item are directed to that item’s owner in order to discover
replica locations. With dynamic replication, the location of
replicas is already known, and lookup requests can be di-
rected to any replica location.

There are two potential shortcomings of dynamic repli-
cation schemes, concerning the management of communi-
cation and (allocation) collisions. We will now examine
these, and explain how they may be addressed.

Communication costsThe maintenance process at a partic-
ular node will require that every node in the replica group
for an item is contacted; in the worst case, this group could
be different for every item that the node owns. To avoid

this, we may use allocation functions that are translations
in d, mapping each replica index onto a keyspace the same
size as the original node’s keyspace.

Replica maintenance performance can be further im-
proved by using functions which exploit the local routing
state stored on each node: for example, we might place
replicas on the finger or successor nodes of each node.

Allocation CollisionsThe allocation function may map the
same object (into the keyspace of a single node) under two
separate replica indexes. Such anallocation collisionmay
occur even if replica locations are well spaced, if the num-
ber of participating nodes is relatively small. The effect of
a collision is to reduce the number of distinct nodes in the
replica group, and hence to reduce reliability.

We propose the following solution. The range of allow-
able replica indexesmshould be divided into two parts: the
core range, with maximum indexRMIN ; and the peripheral
range, with maximum indexRMAX. A maximum index is
needed to ensure a known bound upon the number of repli-
cas of an item—an important consideration if the data is to
be consistently updated and deleted.

The maintenance algorithm should keep track of replica
allocation. When an allocation collision occurs, an addi-
tional replica should be placed at an index in the peripheral
range. Thus replicas will always be placed at core locations,
but may also be present at peripheral locations. Replicas are
placed at replica locations with increasing indexes, starting
from the lowest index, and placed until eitherRMIN distinct
copies are present, or allRMAX allowable locations are filled.

The choice of value forRMAX is important: too low, and
there may be too few distinct replicas; too high, and update
(and delete) performance may suffer—the entire replica
group must be contacted to ensure that all replicas are fresh.
We will examine the problem of settingRMAX in more detail
with reference to particular allocation functions in Section
4.

3.1. Replica maintenance algorithms

In describing our replica maintenance algorithm, we will
identify (groups of) nodes according to the roles that they
play with respect to a single item:

• thecore groupfor an itemd is the set of replica
holders for whichm≤ RMIN

• theperipheral groupconsists of those replica holders
for whichRMIN < m≤ RMAX

The role of the replica maintenance algorithm is to preserve
or restore the following invariants:

1. replicas of an itemd can only be retrieved from
addresses given byh(m, d) where1 ≤ m≤ RMAX

2

2. a replica of an item can always be retrieved rom
addresses given byh(m, d) where1 ≤ m≤ RMIN

3. any peripheral replica with index(m > RMIN) exists
only if a replica is placed at indexm− 1.

We will now explain the maintenance protocols required
to maintain these invariants:

Core MaintenanceThe owner of a data item calculates and
looks up the nodes in the core group. Each core replica
holder synchronises its database with the owner (over that
part of owner’s keyspace that it holds). This will restore the
second invariant.

Core maintenance also deals with allocation collisions,
by keeping track of which nodes store replicas from which
keyranges, and placing additional replicas on peripheral
replica holders if a given keyrange is mapped to the same
node more than once.

Peripheral MaintenanceTo maintain the third invariant,
any node that stores a replica with indexm > RMIN must
check that a replica of that item is held also on the replica
predecessor, the owner of the location with indexm− 1. If
a replica is not present on the previous node, the replica is
orphaned.

For each peripheral replica a node holds, it must obtain a
summary of the items with the previous index on the replica
predecessor. Bloom filters [18] can be used to reduce the
cost of these exchanges.

These summaries can be used to remove orphaned pe-
ripheral replicas from the system (after offering them to
their owner); these replicas should not be used to answer
fetch requests, but still be stored for at least one mainte-
nance interval—maintenance will often replace the missing
replica.

Global MaintenanceEach node calculates the replica loca-
tions for each item it stores. If it stores any item for which
no replica location exists within its ownership space, it of-
fers the item to its owner, then deletes it. This restores the
first invariant.

3.2. Data fetch algorithm

To fetch an item stored using this replication strategy, we
must decide which replica indexes to request, and in which
order. Our proposal is that the data fetch algorithm should
start by requesting a replica with a randomly-chosen index
between zero andRMAX, and continue picking indexes until
a surviving replica is found. If an item is not found during
in the initial search of the replica group, the fetch algorithm
should back off and retry after the maintenance protocols
have repaired the system.

To improve the average fetch time, we propose that if
a replica in the peripheral group is found to be empty, all

larger replica indexes should be eliminated from considera-
tion until all lower indexes have been searched. In situations
where load balancing is not critical, it may prove advanta-
geous to search the core replica locations before trying pe-
ripheral locations.

4. Allocation Functions

We will now describe a number of different allocation
functions—see Table 1—and explore their impact upon re-
liability and performance. The result of applying each func-
tion to data keyd and replica indexm will depend in each
case upon the number of nodes in the systemn, and the
maximum key valuek. The value ofn may be specified by
the user, or estimated at run-time: see [1].

Random placement is not a realistic option. Using a
pseudo-random function, seeded by the original key, to de-
termine replica locations would lead to high maintenance
costs—due to the wide range of nodes that a small key range
could be mapped to—and would make it impossible to ex-
ploit local routing information.

4.1. Successor placement

In this approach, replicas are placed at regular intervals
following the key of the original item, mimicking the effect
of theDHashreplication algorithm. The intention is that the
replicas are stored at keys owned by the successors of the
owner of the original key. This mapping is efficient under
Chord, as the protocol maintains a local list of each node’s
successors on that node, so maintenance lookups can often
be performed without consulting another node.

The relative proximity of locations with different indexes
under this function means a high probability of allocation
collisions. As the distribution of randomly placed nodes is
known, we can provide a sufficient number of additional
locations with high probability: for a keyspace in whichk is
the maximum allowable key, the total keyspace owned byr
adjacent nodes is normally distributed with:

µ ∼=
rk
n

σ2 ∼=
rk2

n2

Thus, by standard properties of the normal distribution, we
should setRMAX = RMIN +1.645

√
RMIN to have a 95% prob-

ability of there beingRMIN distinct nodes available.

4.2. Predecessor placement

Alternatively, we may place the replicas at regular in-
tervalsprecedingthe original item. As queries are routed
clockwise around the ring, towards the node responsible,
a lookup for a node will usually be routed through one of

3

Allocation h(m, d)
successor placement d + (m · k

n) mod k
predecessor placementd− (m · k

n) mod k
finger placement δ = log2(k

n)
d + 2(m+δ) mod k

block placement d− (d mod k·RMAX
n)

+(d mod k
n)

+(m∗ k
n) mod k

Table 1. Allocation Functions

its predecessors. Predecessor placement exploits this fact to
reduce fetch latency, allowing replica holders to satisfy a re-
quest for a key preemptively, and avoiding further network
hops. As with successor placement, the proximity of lo-
cations means a higher probability of allocation collisions:
RMAX should be set accordingly.

4.3. Finger Placement

The Chord system maintains routing information at loca-
tions spaced at fractional distances around the ring, called
finger nodes. We may take advantage of this fact by plac-
ing replicas on these nodes: this has the effect of reducing
the lookup cost, and achieving an even distribution of repli-
cas. The relative separation of replica locations reduces the
likelihood of allocation collisions, and allows us to choose
a lower value forRMAX, improving update performance.

The replica groups for a given node will usually form
disjoint sets of nodes. This can be exploited to reduce re-
covery time following node failure, when we must create a
new copy of every item stored by the failed node. We may
transfer itemsconcurrentlyfrom nodes in each of the replica
groups that the failed node was a member of.

4.4. Block Placement

We may reduce the number of combinations of nodes
whose failure would cause data loss by placingr replica
groups onto the same range of keys. The nodes in each
blockstore all replicas of items with keys within that block,
and no replicas of any other items. This system is similar
to the symmetric replication scheme used in DKS [8], in
which the same data is placed on each of the nodes in an
equivalence class.

This function is discontinuous ind, and the maintenance
algorithm must address this when mapping ranges of keys
onto other nodes. The distance between replica indexes is
the same as with successor and predecessor replication, and
the same method may be used for settingRMAX.

In the next section, we will show that this placement pol-
icy will reduce the probability of data loss, while offering

some of the benefit of successor or predecessor placement,
as many nodes will have replicas placed on both successors
and predecessors.

5. Reliability

Much of the existing work on the reliability of storage
in a distributed hash table has concentrated upon the prob-
ability of a given object being lost. For many applications
however, a more relevant figure is the probability of any
item being lost anywhere in the system. It is this level of
system reliabilitythat we will investigate here.

5.1. Model

To assess the impact on the reliability of replica place-
ment on the system, we model a Chord ring as a series ofn
nodes. Each node’s data is replicatedr times onr different
nodes. We consider the system over an arbitrary length of
time, during which the nodes fail with uniform independent
node failure probability p. The system is considered to have
failed in the event that node failures result in all replicas of
any piece of data being lost.

We will use this model to compute the probability of sys-
tem failure for various placement functions, for a variety of
values ofn, r, andp.

5.2. Block Placement

For a system using block placement to fail, allr nodes
in some block must fail. As blocks correspond to disjoint
sets of nodes, the failure of one block is independent of the
failure of any of the others. As each block fails with prob-
ability pr , the probability that at least one of then/r blocks
will fail is given by:

Fail(p, r, n) = (1− (1− pr)n/r)

5.3. Successor Placement

The probability of data loss with successor placement is
equivalent to that of obtaining a sequence ofr successful
outcomes inn Bernoulli trials with probability of successp.
This is known as theRun Problem, and the general solution
RUN(p, r, n) can be given in terms of a generating function
GF [24].

GF(p, r, s) = pr sr(1−ps)
1−s+(1−p)pr sr+1 ≡

∑∞
i=r cp

i si

Fail(p, r, n) = RUN(p, r, n) =
∑n

i=r cp
i

Figure 1 shows how we may use this function, and that from
Section 5.2 to compare the minimumnode reliability pfor

4

0

0.05

0.1

0.15

0.2

0.25

0.3

4 5 6 7 8 9 10 11 12 13 14

Replication Factor (r)

M
a
x
im

u
m

 n
o

d
e
 f

a
il

u
re

 p
ro

b
a
b

il
it

y Successor

Block

Figure 1. Critical node failure probability for a system failure

probability of < 10−6. These figures are for a 1000 node

system, with varying numbers of replicas.

a 1000-node system withfail(n, r, p) < 10−6: values are
shown for various replication factors.

A larger system requires more reliable nodes in order to
offer the same level of system reliability. The required node
reliability increases with the logarithm of the system size,
as illustrated in Figure 2.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 500 1000

System Size (n)

M
a

x
im

u
m

 n
o

d
e

 f
a

il
u

re
 p

ro
b

a
b

il
it

y

Successor

Block

Figure 2. Critical node failure probability for a system failure

probability of < 10−6. These figures are for a replication

factor of 8.

5.4. Finger Placement

We will use Monte Carlo simulation to compare this to
other patterns: there is, as yet, no closed form. A model
of a 500-node network, in which 250 nodes are marked as
failing, was considered. We produced105 sample networks,
and used them to estimate the probability of any data loss
occurring in the network with varying numbers of replicas
and for each allocation function. Figure 3 shows the proba-
bility of data loss for finger, block, and successor allocation.

From this plot, it is clear that finger placement is signif-
icantly less reliable than other data placement algorithms.
Interestingly, in our simulations, finger and random place-
ment produced near identical system failure rates.

0 4.0 8.0 12.0 16.0 20.0

Replicas

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

of
 D

at
a

Lo
ss Finger

Successor
Block

Figure 3. Probability of system failure for three allocation func-

tions in a 500 node system where 50% of nodes fail. Finger

and random results overlap. Error bars show 95% confidence

intervals.

5.5. Designing a reliable system

The data above allows us to place limits on participant
node reliability in order to achieve a given system reliability.
In reality, system designers have very little control over the
reliability of the nodes they deploy on, and must adjust the
replication factor accordingly.

Increasing the replication factor provides an effective
method of reaching a desired level of system reliability,
though at the cost of increased storage and bandwidth re-
quirements. Another option may be to increasing the fre-
quency of maintenance, thus reducing the period of time
during which nodes can fail. However, bandwidth limita-
tions can present a serious barrier to frequent maintenance
of large quantities of data [2].

5

6. Simulation

We now attempt to quantitatively compare the perfor-
mance and bandwidth usage of these replication algorithms.
Due to the difficulty of managing large numbers of physical
nodes [7], we chose to test the algorithms through simula-
tion rather than through deployment.

Our simulator is based around the SimPy [16] discrete-
event simulation framework, which uses generator func-
tions rather than full threads to achieve scalability. The sim-
ulator implements a message level model of a Chord net-
work running each of the replication algorithms described.
We model a system that might resemble a data centre built
from cheap commodity components. We simulate a net-
work of 200 nodes in which nodes join and leave the system
at the same rate. Latency between nodes is assumed to be
uniform. Our sample workload includes 50,000 fetches for
data originating from randomly chosen nodes.

We choose parameters for the Chord algorithm that al-
lowed routing to be resilient to a high level of churn. Local
and Core Maintenance algorithms run two passes at each
maintenance interval, and our dynamic fetch algorithm is
set to search the core replica group before trying any pe-
ripheral replicas.

7. Fetch Latency

The DHash algorithm, and each of the placement pat-
terns for dynamic replication result in differing data fetch
latencies. The simulation results in Figure 4 show how the
fetch times differed for each of our algorithms for various
system sizes. Although all replication algorithms have fetch
times logarithmic in system size, there are significant differ-
ences between the algorithms.

The predecessor algorithm achieves the shortest fetch
times. This is because when a request for an object is routed
through a node which holds a replica of that object, itmay
return it’s replica of that object instead of passing on the re-
quest, if it has spare upload capacity. We call thispreemp-
tive return. Under predecessor allocation, queries for core
replicas are more often routed through peripheral replicas,
which return the data preemptively. This happens less of-
ten with successor or block allocation and very infrequently
with finger allocation.

Our implementation of the DHash fetch algorithm in-
volves returning the successor list of the owner to the re-
questing node, which then chooses and requests a replica
from the successor list. This causes the two hop difference
between DHash and dynamic finger replication.

The frequency of replica maintenance had varying ef-
fects on the fetch latency of each replication strategy. Un-
der those algorithms where preemptive return is common,
the fact that the specific replica being requested has failed

0 125.0 250.0 375.0 500.0

Network Size

0

1.75

3.5

5.25

7.0

G
et

 T
im

es
 (

ne
tw

or
k

ho
ps

)

Predecessor
DHASH
Finger
Block
Successor

Figure 4. Get times in various system sizes. (Successor and

Block overlap).

is often masked by other replica holders, which allow a re-
quest for a dead replica to be successful. Thus, Predecessor,
Successor and Block placement perform better under high
failure rates than DHash or Dynamic Finger Placement.

7.1 Correlated failure

We have so far investigated the fetch latency of these
data replication algorithms under a steady state of churn,
in which new nodes join at the same rate as other nodes fail.
The system can also recover from far higher failure rates,
although there is a substantial performance impact.

To assess the impact of correlated failures, we simu-
late the failure of varying proportions of the nodes in a
500 node network. Fifty thousand fetch requests are then
launched, and the average time they take to return, includ-
ing retries, is recorded. The DHash algorithm is partic-
ularly affected under such scenarios. This is because of
DHash must be able to route to the owner of a data item
in order to locate the replicas of that data item. If the
Chord infrastructure is temporarily unable to route to the
owner node, that item may not be fetched until the over-
lay is repaired. When using dynamic maintenance, replicas
are stored at well known locations, and an interruption in
Chord routing to one of these locations may leave others
accessible. Dynamic maintenance is thus more resilient to
correlated failure than DHash.

8. Bandwidth Usage

Bandwidth usage is influenced by the rate at which nodes
fail. In order to abstract away the timescale with which node
failures occur, we present our bandwidth data in terms of the

6

systems’half life, where a half life is the period of time over
which half the nodes in the original system have failed.

In Figure 5, we analyse maintenance overhead band-
width, that is, all maintenance traffic excluding replica data.
We show how it varies with maintenance frequency, in
terms of the number of repairs per half life. DHash main-
tenance has lower overhead than the dynamic algorithms.
This is largely because of the peripheral maintenance algo-
rithm, which involves bloom filter exchange, and is not nec-
essary under DHash. The dynamic algorithms all have sim-
ilar overhead, which increases linearly with maintenance
frequency. Block allocation has higher maintenance band-
width because the allocation function is not continuous, and
so requires more lookups.

1 10 100

Maintenance Calls Per Half Life

0

0.3

0.6

0.9

1.2

M
B

/N
od

e/
H

al
f L

ife

Predecessor
DHASH
Finger
Block
Successor

Figure 5. Overhead bandwidth in a 200 Node system with

varying numbers of repairs. Successor, Predecessor, and

Finger allocation overlap.

Data movement bandwidth is likely to be the bottleneck
in distributed storage systems. Figure 6 shows significantly
more data is moved with DHash than the dynamic algo-
rithms since, under DHash, a single node joining produces
changes in the membership ofr nearby replica groups. The
dynamic algorithms do not suffer from this, and all perform
very similarly under this test, moving significantly less data
than DHash at high maintenance rates.

9. Discussion

9.1. Related work

Our work builds on published work on dynamic repli-
cation, [23, 9], providing maintenance methods that deal
with allocation collisions, and showing explicitly the effect
of different allocation functions on the system. Numerous
papers have discussed the reliability of storage in distrib-
uted hash tables [8, 9, 2], they have concentrated on the per-

1 10 100

Maintenance Calls Per Half Life

0

0.5

1.0

1.5

2.0

R
ep

lic
as

 M
ov

ed
 P

er
 H

al
f L

ife

Predecessor
DHASH
Finger
Block
Successor

Figure 6. Proportion of data in system transmitted in one

halflife. (Predecessor, Block and Successor overlap)

object loss probabilities, rather than taking a system wide
view, as we have.

Other replication strategies use a DHT to store meta-
data pointing to the keys under which replicas are stored, as
used by CFS [6]. Our work compliments such approaches
by analysing the techniques necessary to reliably store this
metadata.

Replication in decentralised systems based on unstruc-
tured peer to peer systems, such as Gnutella, has received
much attention [14, 11, 5]. Our work complements these
contributions by considering replication in Chord, a struc-
tured environment.

9.2. Future Work

In this paper, we have exclusively considered replication
by storing a complete copy of the data associated with each
key on another node. Erasure coding[19] is an alternative
method of storing multiple copies of data, in which an item
is divided into N fragments such that the item can be recon-
structed from a subset of those fragments. This can provide
increased efficiency in some circumstances [21, 25], at the
cost of additional complexity. An extension of this work to
erasure coded data would be an interesting area for further
work.

9.3. Conclusions

Many decentralised storage solutions employ replication
to provide reliability. We have used a combination of analy-
sis and simulation to provide an insight into how the choice
of replication strategy can affect the communication costs,
reliability, and latency of such a system.

7

We can see that dynamic replication can achieve faster
lookups, greater reliability and less replica movement than
the DHash algorithm, at the cost of higher maintenance
overhead and some additional complexity. We have also
shown how the allocation function choice can have a dra-
matic impact on performance, though no single allocation
function excels in both reliability and fetch latency. The
choice of which function to use should therefore be based
on careful consideration of which of these performance
metrics is more important to the particular application.

References

[1] A. Binzenḧofer, D. Staehle, and R. Henjes. Estimating the
size of a Chord ring. Technical Report 348, University of
Würzburg, 11 2004.

[2] C. Blake and R. Rodrigues. High availability, scalable
storage, dynamic peer networks: Pick two. InNinth
Workshop on Hot Topics in Operating Systems (HotOS-IX).

[3] E. Brunskill. Building peer-to-peer systems with Chord, a
distributed lookup service. InHOTOS ’01: Proceedings of
the Eighth Workshop on Hot Topics in Operating Systems.

[4] J. Cates. Robust and efficient data management for a
distributed hash table. Master’s thesis, Massachusetts
Institute of Technology.

[5] E. Cohen and S. Shenker. Replication strategies in
unstructured peer-to-peer networks. InACM SIGCOMM
2002.

[6] F. Dabek, M. F. Kaashoek, D. Karger, and R. M. I. Stoica.
Wide-area cooperative storage with CFS. InProceedings of
the 18th ACM Symposium on Operating Systems Principles
(SOSP ’01).

[7] D. P. David Oppenheimer, Jeannie Albrecht and A. Vahdat.
Distributed resource discovery on planetlab with sword. In
Proceedings of the First Workshop on Real, Large
Distributed Systems (WORLDS ’04).

[8] A. Ghodsi, L. O. Alima, and S. Haridi. Symmetric
replication for structured peer-to-peer systems. InThe 3rd
International Workshop on Databases, Information Systems
and Peer-to-Peer Computing.

[9] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Highly
durable, decentralized storage despite massive correlated
failures. InProceedings of the 2nd USENIX Symposium on
Networked Systems Design and Implementation (NSDI ’05).

[10] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
Oceanstore: an architecture for global-scale persistent
storage. InProceedings of the Ninth international
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS 2000).

[11] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and
replication in unstructured peer-to-peer networks. InICS
’02: Proceedings of the 16th international conference on
Supercomputing.

[12] P. Maymounkov and D. Mazieres. Kademlia: A
peer-to-peer information system based on the XOR metric.
In Proceedings of IPTPS02.

[13] R. C. Merkle. Protocols for Public Key Cryptosystems. In
Proceedings of the 1980 Symposium on Security and
Privacy. IEEE Computer Society.

[14] A. Mondal, Y. Lifu, and M. Kitsuregawa. On improving the
performance-dependability of unstructured p2p systems via
replication. InProceedings of Database and Expert
Systems Applications (DEXA04).

[15] R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-Peer Lookup Service for
Internet Applications. InACM SIGCOMM 2001.

[16] K. Muller. Advanced systems simulation capabilities in
SimPy. InEuropython 2004.

[17] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy: A
read/write peer-to-peer file system. InProceedings of the
5th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’02).

[18] G. L. Peterson. Time-space trade-offs for asynchronous
parallel models (reducibilities and equivalences). InSTOC
’79: Proceedings of the eleventh annual ACM symposium
on Theory of computing.

[19] M. O. Rabin. Efficient dispersal of information for security,
load balancing, and fault tolerance.Journal of the ACM,
36(2):335–348, 1989.

[20] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network.
Technical report.

[21] B. L. M. Rodrigo Rodrigues (MIT). High availability in
dhts: Erasure coding vs. replication. InProceedings of
IPTPS05.

[22] A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer
storage utility. InProceedings of the 18th SOSP (SOSP
’01).

[23] M. Waldvogel, P. Hurley, and D. Bauer. Dynamic replica
management in distributed hash tables. Research Report
RZ–3502, IBM, 2003.

[24] E. W. Weisstein. Run. from mathworld–a wolfram web
resource. http://mathworld.wolfram.com/run.html.

[25] Z. Zhang and Q. Lian. Reperasure: Replication protocol
using erasure-code in peer-to-peer storage. In21st
Symposium on Reliable Distributed Systems.

[26] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D.
Joseph, and J. D. Kubiatowicz. Tapestry: A resilient
global-scale overlay for service deployment.IEEE Journal
on Selected Areas in Communications.

8

