
Higher-order matching for program
transformation

Ganesh Sittampalam
Magdalen College

D.Phil. Thesis
Trinity Term, 2001

�

Higher-order matching for program
transformation

Ganesh Sittampalam, Magdalen College

D.Phil. Thesis
Trinity Term, 2001

Abstract

The tension between abstraction and efficiency in programming can be eased
by program transformation; programs which are highly abstract and read-
able, but inefficient, are automatically converted to efficient forms, allowing
the programmer to gain the advantages of having easy to understand and
maintainable source whilst also obtaining reasonable performance from the
compiled code.

Many transformations cannot be detected and applied completely auto-
matically. Active source seeks to circumvent this problem by allowing the
programmer to have some control over what transformations are applied and
how this is done, by annotating the source code with just enough information
to allow the transformation to be mechanised.

Some complex transformations can be expressed as conditional higher-
order rewrite rules. Mechanically applying such rules requires the use of
higher-order matching, which is undecidable and infinitary in general for any
type system more complex than the simply-typed lambda calculus. This
thesis is concerned with algorithms for a suitably restricted version of this
problem for use in applying such transformations.

Our contributions are to present two novel algorithms, the one-step and
the two-step algorithms, which depart from previous work in the field by not
being dependent on any particular type system and by not being specified in
terms of the “order” of the results generated. Instead we restrict the notion
of β-equality so as to make the problem tractable. Our algorithms have clear
specifications, so that if they do not apply in any particular situation it is
easy to understand why.

We also show how our algorithms have been implemented in the functional
programming language Haskell as part of the prototype program transforma-
tion system MAG, and give various examples of applying them to transfor-
mation problems.

Acknowledgments

There are many people who have contributed to this thesis in one way or
another, and I would like to express my gratitude to each of them. First and
foremost, my supervisor, Oege de Moor, who has collaborated with me on
the work presented here, showed me how research should be done, and helped
me to learn the essential arts of speaking and writing. He has always been
available to help when required, but has also given me the space I needed to
learn to survive on my own.

The Programming Tools Group here at Oxford, of which I am a member,
has provided invaluable support, both through regular meetings which pro-
vided a forum for immediate review of work in progress, and by providing a
network of mutual support and assistance. In particular, Eric Van Wyk read
this entire document with very little notice and made many valuable sugges-
tions, and Yorck Hünke read some of the chapters and found various errors
and points which required further elucidation. My officemates Kevin Back-
house and Iván Sanabria-Piretti provided much help with LATEXproblems.

A large group of friends in Oxford made an invisible contribution simply
by being there, especially when work was not going so well. In addition,
Ian Lynagh proofread much of this thesis and pointed out many obvious and
not-so-obvious errors, and Ben Kremer proofread an earlier progress report,
some of which material has ended up in here in modified form.

I very much appreciate the effort put in by my examiners, Richard Bird
and John Hughes, and the many helpful comments they made during my
oral examination. At an earlier progress review, Richard Bird also suggested
making use of higher-order functions to allow the common elements of each
matching algorithm to be elegantly shared; this idea made a big difference
to the elegance of the presentation.

Microsoft Research provided generous financial support for the entire pe-
riod of my doctorate, and the Intentional Programming team were hosts for
two enjoyable internships at Microsoft in Redmond.

Finally, I would like to thank all the people involved in the rather unusual
circumstances in which I did my undergraduate degree which laid the foun-
dations for this doctorate, in particular my parents and Donald Keedwell
from the University of Surrey. I am also very grateful for the encouragement
from my parents of my early interest in computers which eventually led me
into this field of research.

1

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Promotion . 8

1.2.1 Mechanisation . 18
1.3 Fusion . 23

1.3.1 Deforestation . 25
1.3.2 Short-cut deforestation 27

2 Preliminaries 31
2.1 The matching problem . 31
2.2 Notation . 35

2.2.1 Expressions . 35
2.2.2 Subexpressions . 37
2.2.3 Substitutions . 37
2.2.4 Meta-programs . 39
2.2.5 Rules . 39

2.3 Specification . 40
2.3.1 Beta-reduction . 40
2.3.2 Matches . 43
2.3.3 Match sets . 44

2.4 Implementation . 45
2.4.1 Specification of resolve 47
2.4.2 Implementing resolve 48

2.5 Proof of correctness . 50
2.5.1 Correctness of matches 50
2.5.2 Correctness of resolve 53

2.6 Example : Simple matching 60

3 One-step matching 63
3.1 Specification . 63

3.1.1 Example : fast reverse 69

2

CONTENTS

3.2 Algorithm . 69
3.2.1 Defining apps . 72

3.3 Proof of correctness . 74
3.3.1 Correctness of apps . 78

3.4 Related work : Second-order matching 79
3.4.1 Notation . 79
3.4.2 Algorithm . 80
3.4.3 Example . 83
3.4.4 Discussion . 85

4 Two-step matching 87
4.1 Specification . 87

4.1.1 Example : mindepth 94
4.2 Algorithm . 95

4.2.1 Defining abstracts . 97
4.3 Proof of correctness . 102

4.3.1 Correctness of abstracts 105
4.4 Related work : Third-order matching 113

4.4.1 Tree automata . 113
4.4.2 Solving interpolation equations 115
4.4.3 Combining results . 116
4.4.4 Example . 116
4.4.5 Discussion . 118

5 Practical implementation of matching 120
5.1 Example session with MAG 122
5.2 Implementation . 124

5.2.1 Preliminaries . 125
5.2.2 Framework . 128
5.2.3 Simple matching . 131
5.2.4 One-step matching . 132
5.2.5 Two-step matching . 133

5.3 Efficiency . 137
5.3.1 Viability test . 137
5.3.2 Checking flexibility . 139
5.3.3 Other optimisations . 139
5.3.4 Performance tests . 140

6 Examples 142
6.1 Minimum depth . 142
6.2 Alpha-beta pruning . 145

3

CONTENTS

6.3 Steep sequences . 150
6.4 The path sequence problem 152
6.5 Optimising abstracts . 155

7 Discussion 158
7.1 MAG . 160
7.2 Variations on our algorithms 161
7.3 Implementation of matching 163
7.4 Other applications . 165

Bibliography 166

Index 177

A Quick reference 178
A.1 Definitions and notation . 178
A.2 Specification . 179

A.2.1 Beta-reduction . 179
A.2.2 Matching . 181
A.2.3 resolve . 181
A.2.4 appresolve . 181

A.3 Implementation . 182
A.3.1 matches . 182
A.3.2 resolve . 182
A.3.3 appresolve none . 182
A.3.4 appresolve once . 183
A.3.5 appresolve twice . 183

B MAG derivations 184
B.1 Minimum depth . 184
B.2 Alpha-beta pruning . 186
B.3 Steep sequences . 189
B.4 Path sequence problem . 190

B.4.1 Initial calculations with llp 190
B.4.2 Calculation of fastllp 194
B.4.3 Calculation of llp ′′ . 211

B.5 Optimising abstracts . 220

4

Chapter 1

Introduction

1.1 Motivation

Program transformation is the process of converting a piece of code from one

form to another whilst preserving its essential meaning. Most often, the aim

is to improve time or space efficiency, though other goals such as making an

abstract specification executable also fall within this field.

There is an enormous variety of potential transformations, many of which

are relatively simple and can be easily applied automatically by a computer;

such transformations are often implemented as part of modern optimising

compilers and programmers can enjoy the benefits they bring in terms of

the performance of the compiled code without needing any knowledge of

their details. However, many others are rather more complicated and re-

quire sophisticated analysis or specialised knowledge to apply, which makes

it infeasible to search for and apply them as a routine part of the compila-

tion process. In other cases, a transformation can be automatically detected

and applied but it is hard for the programmer to predict when writing code

whether or not the transformation will successfully apply to that code.

The alternative to automatic transformation is for the programmer to

simply apply the relevant change manually when a guarantee of the extra

performance it will provide is required. This process might be completely

5

CHAPTER 1. 1.1. MOTIVATION

implicit; an experienced programmer would just write the optimised program

directly, perhaps without even thinking about the less optimal version that

could have been written instead. However, the gain in efficiency comes at

a price; less optimal code is often also simpler and more readable and thus

easier to maintain and less likely to contain bugs.

It is this clash that motivates the concept of active source. Recognising

that many programs can be written both in an inefficient simple form and in

an efficient complex form, and that these forms often cannot easily be linked

by completely automatic transformations, we seek a compromise. We write

the program in the first form, but add extra annotations that give enough

direction to the compiler for the second form to be automatically derived.

This thesis seeks to advance this concept by providing practical techniques

to support it. In particular, we focus on source-to-source transformations,

that is those which return a program in the same source language as the input

program. Such transformations have the property that it should be easy

to inspect the resulting code to verify whether the transformation had the

desired result or not. This possibility is likely to be particularly important to

programmers who have gone to the extra effort of annotating their program

in the first place.

One of the key elements of mechanising the application of complex pro-

gram transformations is higher-order matching. We develop two algorithms

to carry this out that represent an advance on existing theory, provide prac-

tical implementations of these algorithms, and show how they can be applied

to mechanise some rather involved manual promotion derivations from the

literature. One of the key features of the algorithms is that they have clear

specifications of what they do and do not do. Thus, if a transformation fails

because our higher-order matching algorithms fail, users can see from the

specification exactly why this was.

For simplicity, we choose to transform functional programs. One key

feature that these have is referential transparency – it is always possible to

replace an expression with its value without changing the meaning of the

6

CHAPTER 1. 1.1. MOTIVATION

program, making it straightforward to apply transformations based on equa-

tional reasoning to our programs. Some might consider this choice a bit

limiting, but we see no intrinsic reason why our algorithms could not also

be used with imperative programs, given enough time to deal with the usual

complexities of transforming languages that allow side-effects. Of course,

others would argue that functional programs are actually superior to im-

perative programs in any case – languages such as Haskell offer significant

advantages, particularly in terms of ease of use and modularity [48].

The rest of this thesis is structured as follows:

• In the remainder of this chapter we provide a gentle introduction to

promotion (Section 1.2) and explain how we shall mechanise this trans-

formation (Section 1.2.1). We then discuss related work in the broader

field of fusion transformations (Section 1.3) and go into more depth

for the deforestation (Section 1.3.1) and short-cut deforestation (Sec-

tion 1.3.2) transformations which are most closely related to our work.

• In Chapter 2 we introduce the problem of higher-order matching and lay

a framework within which our matching algorithms shall be developed.

• In Chapters 3 and 4 we develop the one-step and two-step algorithms

respectively and discuss in detail some related matching algorithms

from the literature (Sections 3.4 and 4.4).

• In Chapter 5 we show how these algorithms can be implemented in

the functional programming language Haskell as part of MAG, a toy

program transformation system.

• Chapter 6 gives some examples of transformations that have been suc-

cessfully mechanised using MAG.

• Finally, we conclude in Chapter 7 by discussing the value of our work

and possible future developments.

7

CHAPTER 1. 1.2. PROMOTION

• Appendix A provides a quick reference for the notation and important

definitions in this thesis.

• Appendix B gives the exact details of the examples discussed in Chap-

ter 6.

Readers purely interested in using MAG are advised to read the beginning

of Chapter 5 and Section 5.1, and then Chapter 6 with reference to the actual

input and output to MAG given in Appendix B. Those interested in using

our matching algorithms in their own projects should read Chapters 2, 3

and 4, along with Chapter 5 from Section 5.2 onwards. It may be advisable

to skip the proofs of the lemmas that occasionally appear, and the proofs

of correctness in Sections 2.5, 3.3 and 4.3. Of course, those interested in

verifying the correctness of our algorithms for themselves should check these

proofs carefully!

1.2 Promotion

Consider the obvious program to calculate the reverse of a list:

reverse [] = []

reverse (x : xs) = reverse xs ++ [x]

This program is well known in the functional programming community as

the canonical example of inefficient use of (++), the operator that joins two

lists together. The problem is that (++) takes running time proportional to

the length of its first argument. Thus, programs such as reverse that build

up a result by repeatedly adding to the right-hand end of a list often end up

taking time that is quadratic in the size of the result.

The well-known improvement to this program and others like it [97] is

known as cat-elimination. It takes advantage of the associativity of (++) to

reorganise the calculation so that new elements are added to the left-hand

side of the list being constructed. This requires elements to be added in the

8

CHAPTER 1. 1.2. PROMOTION

opposite order, which can be achieved by the addition of an accumulating

parameter to the program definition; this parameter is used to build up the

result starting with the rightmost element instead of the leftmost. An aux-

iliary function fastreverse that takes an extra parameter ys is defined, and

reverse is redefined to invoke fastreverse, initialising ys to the empty list []:

reverse xs = fastreverse xs []

fastreverse [] ys = ys

fastreverse (x : xs) ys = fastreverse xs (x : ys)

Proving that the original and improved programs for reverse are equal is a

straightforward induction argument; however what we really want to do is

automatically generate the second program. If this is carried out by a process

of applying correct transformation rules, this will of course simultaneously

provide a proof of correctness.

The key detail that links these two programs is the following specification

for the fastreverse function:

fastreverse xs ys = reverse xs ++ ys

This specification encodes in a formal manner the insight that we stated in

words above, namely that the optimised version can be obtained by adding

an accumulating parameter to reverse. Of course, it still remains to show

how this leads to the improved program. If we were to do this manually, the

derivation would look something like the following:

fastreverse [] ys

= {specification of fastreverse}

reverse [] ++ ys

= {definition of reverse}

[] ++ ys

= {definition of (++)}

ys

9

CHAPTER 1. 1.2. PROMOTION

fastreverse (x : xs) ys

= {specification of fastreverse}

reverse (x : xs) ++ ys

= {definition of reverse}

(reverse xs ++ [x]) ++ ys

= {associativity of (++)}

reverse xs ++ ([x] ++ ys)

= {definition of (++)}

reverse xs ++ (x : ys)

= {specification of fastreverse}

fastreverse xs (x : ys)

This derivation gives us the efficient program for fastreverse; examination

of the specification also shows us how we can define reverse in terms of

fastreverse.

For another example of a transformation between an obvious inefficient

program and a more subtle efficient one, consider the following program for

calculating the minimum depth of a leaf-labelled binary tree:

data Tree α = Leaf α | Bin (Tree α) (Tree α)

mindepth (Leaf x) = 0

mindepth (Bin t1 t2) = min (mindepth t1) (mindepth t2) + 1

This program will examine every node of the tree, which is often not

necessary. For example, the left-leaning tree in Figure 1.1 has a minimum

depth of 1; this can be established quickly by noticing that the right branch

of the root node is a leaf and that it is therefore not necessary to check the left

branch. Thus, one possible optimisation would traverse the tree recursively

as in the program above, but cut off the search on any particular branch if

it reached a depth that was greater than the minimum depth already found

10

CHAPTER 1. 1.2. PROMOTION

�
�
�
�

�
	
�

�
	
�

�
�
�
�

@
@
@
@

�
	
�

@
@
@
@

�
	
�

�
	
�

�
�
�
�

@
@
@
@

�
	
�

�
	
�

0

1 1

22

33

Figure 1.1: A left-leaning binary tree with depths labelled

(another possibility that we shall not explore here would be to conduct a

breadth-first search).

To implement this optimisation, two accumulating parameters are needed.

One, which we call d , stores the current depth we have reached in the tree

being traversed, and another, m, that stores the minimum depth that has

been seen so far. If the first parameter reaches the value of the second on

any particular branch of the tree, then the search can be terminated for that

branch. We can specify this optimisation as before:

md t d m = min (mindepth t + d) m

mindepth t = md t 0∞

The following calculation then gives us an efficient program for md :

md (Leaf x) d m

= {specification of md}

min (mindepth (Leaf x) + d) m

11

CHAPTER 1. 1.2. PROMOTION

= {definition of mindepth}

min (0 + d) m

= {definition of +}

min d m

md (Bin t1 t2) d m

= {specification of md}

min (mindepth (Bin t1 t2) + d) m

= {definition of mindepth}

min ((min (mindepth t1) (mindepth t2) + 1) + d) m

= {associativity of +}

min ((min (mindepth t1) (mindepth t2)) + (1 + d)) m

= {the result of mindepth is non-negative}

if 1 + d≥m then m

else min (min (mindepth t1) (mindepth t2)

+ (1 + d))

m

= {+ distributes over min}

if 1 + d≥m then m

else min (min (mindepth t1 + (1 + d))

(mindepth t2 + (1 + d)))
m

= {associativity of min}

if 1 + d≥m then m

else min (mindepth t1 + (1 + d))

(min (mindepth t2 + (1 + d)) m)

= {specification of md}

if 1 + d≥m then m

else md t1 (1 + d) (md t2 (1 + d) m)

12

CHAPTER 1. 1.2. PROMOTION

Thus, we are left with this program:

mindepth t = md t 0∞
md (Leaf x) d m = min d m

md (Bin t1 t2) d m = if 1 + d≥m

then m

else md t1 (1 + d) (md t2 (1 + d) m)

The two derivations that we have described, for fast reverse and minimum

depth, represent quite different optimisations. However, they do have some

features in common; in particular, in both cases the initial and final programs

are recursive traversals of an inductive datatype. Both derivations proceed

by the following pattern, a strategy first put forward by Bird in 1984 under

the name promotion [9]. Here we present the steps in the manner of Burstall

and Darlington’s famous fold/unfold transformations [15]. For simplicity, we

neglect the issue of mutually recursive datatypes, which can also be handled

by this strategy with a little more care.

• Define original program orig x , where x is a variable of type T .

• Specify optimised program opt x r (where r is a set of additional pa-

rameters) in the form opt x r = f (orig x) r

• For each constructor C in the datatype T , instantiate x to a generic

instance of C and:

– Unfold the specification of opt x r

– Unfold the resulting instance of orig x

– Do some calculation on the result using equational laws to give a

form suitable for the final step:

– For each parameter y of C of type T , fold all occurrences of y

into the form opt y r ′ for some r ′.

13

CHAPTER 1. 1.2. PROMOTION

From the point of view of an automatic program transformation system,

the difficulty with this pattern is that it is necessary to apply the equation

specifying the optimisation in both directions; forwards in the initial un-

folding step and backwards in the final folding step. A näıve system which

tries to apply every rule it knows wherever possible will inevitably loop if

given rules of this nature, which is a well-known problem with Burstall and

Darlington’s transformations.

Fortunately, category theory provides an elegant formalism within which

this strategy can be encapsulated. We mentioned that the initial and final

programs are recursive traversals of inductive datatypes; formally, this means

that they can be expressed as folds (otherwise known as catamorphisms).

Each datatype has precisely one fold, which can be derived from the datatype

in a straightforward fashion; any recursive traversal of the datatype can be

uniquely expressed in terms of this fold. A formal law which is also known

as promotion [10, 11, 61, 62], or fusion in [63], shows how a fold followed

by another function can be expressed just as a fold provided that certain

conditions are met. For example, consider the datatype of lists:

data [α] = [] | α : [α]

This datatype has constructors [] and (:). The fold function over lists is

named foldr in Haskell; foldr (⊕) e xs replaces all occurrences of [] and (:)

in xs with e and (⊕) respectively:

foldr (⊕) e [] = e

foldr (⊕) e (x : xs) = x ⊕ (foldr (⊕) e xs)

So for example,

foldr (⊕) e (1 : (2 : (3 : []))) = 1 ⊕ (2 ⊕ (3 ⊕ e))

(where 1 : (2 : (3 : [])) is the list [1, 2, 3] written out in long form).

Now, consider the expression f (foldr (⊕) e [1, 2, 3]). To express this di-

rectly as a fold over the list [1, 2, 3], we need to find (⊗) and e ′ such that:

14

CHAPTER 1. 1.2. PROMOTION

f (1 ⊕ (2 ⊕ (3 ⊕ e))) = 1 ⊗ (2 ⊗ (3 ⊗ e ′))

One way that this might be true is if we have the following:

∀x , y .f (x ⊕ y) = x ⊗ (f y)

f e = e ′

The first of these conditions allows us to “push” f through the series of ⊕s,

and the second allows us to replace the resulting f e with e ′, giving this

derivation:

f (1 ⊕ (2 ⊕ (3 ⊕ e)))

= {first condition}

1 ⊗ f (2 ⊕ (3 ⊕ e))

= {first condition}

1 ⊗ (2 ⊗ f (3 ⊕ e))

= {first condition}

1 ⊗ (2 ⊗ (3 ⊗ f e))

= {second condition}

1 ⊗ (2 ⊗ (3 ⊗ e ′))

There is nothing special about the values 1, 2 and 3 or indeed about the

length of the list; thus we have a general promotion law for lists (which can

easily be proved by induction):

f (foldr (⊕) e xs) = foldr (⊗) e ′ xs

if f strict

f e = e ′

∀x , y : f (x ⊕ y) = x ⊗ (f y)

The strictness condition on f is required to make this law correct for lazy

languages such as Haskell in the case where xs is an infinite list. Otherwise,

we might transform a program that did terminate (because the foldr on the

15

CHAPTER 1. 1.2. PROMOTION

left-hand side of the rule was never evaluated) into one that did not terminate

(because the foldr on the right-hand side will always be evaluated and it is

strict in its list argument). We can express reverse in terms of foldr :

reverse xs = foldr (λ a as . as ++ [a]) [] xs

The same is true for the efficient definition of fastreverse, but the result is

a little more complicated; in this case foldr will return a function which is

then applied to the accumulating parameter ys :

fastreverse xs ys = foldr (λ a f as . f (a : as)) (λ a . a) xs ys

Now, recall the specification of fastreverse:

fastreverse xs ys = reverse xs ++ ys

If we express reverse as a foldr as shown above, then since fastreverse can

be expressed as a function applied to reverse we should be able to apply

promotion to derive the form above.

Of course, manually expressing reverse as a foldr would be rather incon-

venient, especially since the process should be essentially mechanical. Con-

veniently, promotion comes to our aid once more. Consider the expression

foldr (:) [] xs ; this expression evaluates to xs with all occurrences of (:) re-

placed by (:) and [] replaced by []. In other words, foldr (:) [] is equivalent to

the identity function on lists. Thus, reverse xs can equivalently be written as

reverse (foldr (:) [] xs), and the promotion law can then be applied to derive

a definition for reverse directly in terms of foldr .

In fact, this application of promotion can be merged with the use that

derives the efficient form for fastreverse which we have already discussed

– we show exactly how this works in Section 1.2.1, when we describe the

mechanisation of this process.

Thus, deriving the efficient version of fastreverse is reduced to the prob-

lem of applying promotion to the expression fastreverse (foldr (:) [] xs) ys ,

making use of various definitions and the associativity of the (++) operator.

Indeed, we could define reverse in the following style:

16

CHAPTER 1. 1.2. PROMOTION

reverse [] = []

reverse (x : xs) = reverse xs ++ [x]

transform reverse xs = fastreverse xs []

where fastreverse xs ys = reverse xs ++ ys

with list promotion

definition of reverse

definition of (++)

∀ xs , ys , zs : (xs ++ ys) ++ zs = xs ++ (ys ++ zs)

This program is of course significantly longer than simply writing the opti-

mised form of fastreverse directly, but it has its design steps explicitly doc-

umented. Cat-elimination is a “well-known” transformation, but the knowl-

edge of how to apply it is generally communicated in an ad-hoc fashion. Here

we have formalised the required information in a form which communicates

it both to a programmer unfamiliar with cat-elimination and to the compiler.

In the case of rather more complicated or specialised transformations such as

that required for the mindepth example, the advantages of this form should

be even more significant.

The correctness of each part can easily be verified – the original definition

of reverse is obvious, and individual rules in the with clause are simple and

can be checked independently of each other. Combining the new definition

of reverse in terms of fastreverse and the specification of fastreverse immedi-

ately shows that together they leave the behaviour of reverse unaltered. This

contrasts with the need to use some deep intuition or detailed reasoning to

check the directly optimised program.

It is the mechanisation of the necessary transformation for this example

and others like it that we shall address in the remainder of this thesis. In the

following section, we explain the process of fully automatically transforming a

program given in this way into the desired efficient version, and thus motivate

the development of higher-order matching algorithms in Chapters 2, 3 and 4.

Chapter 5 gives some details of how we have implemented these ideas, and in

Chapter 6 we provide some rather more substantial examples of optimisations

17

CHAPTER 1. 1.2. PROMOTION

which can be given in this way and mechanised using our techniques.

1.2.1 Mechanisation

Automatically applying promotion can be done with term rewriting, a process

of applying equationally correct laws to an expression. Consider for example

the expression 1 + square 2 and the law square x = x ∗ x . Clearly we can

use this law to write the expression as 1 + 2 ∗ 2, but consider the exact

process required to do this. First, we search for a subexpression of 1 +

square 2 to which the rule applies. To make use of the rule, we must find

an appropriate subexpression and a value for x , the only free variable in the

rule. To do this, we match the left-hand side of the rule – square x in this

case – against each subexpression of 1 + square 2. Matching two expressions

is the process of searching for a substitution that when applied to the first

expression produces exactly the second expression. Thus, in this case we will

find the subexpression square 2 and the substitution x := 2. To apply the

rule, we simply apply the substitution we found to the right-hand side of the

rule, giving 2 ∗ 2, and replace the original subexpression with this expression

to give 1 + 2 ∗ 2.

This procedure is known as first-order term rewriting. A good introduc-

tion to the theory behind it can be found in [4]. However, it is not adequate

for our purposes, for two reasons.

Firstly, promotion rules have side conditions which must be verified.

Thus, the above procedure must be extended; after matching the left-hand

side of the rule against an appropriate subexpression, we first check all the

side conditions before replacing the subexpression with the right-hand side

of the rule (appropriately instantiated). Indeed, as with the promotion rule,

sometimes the right-hand side will contain some free variables that are not

on the left-hand side, values for which have to be found during the process

of verifying the side conditions. Recall the promotion rule for lists we gave

18

CHAPTER 1. 1.2. PROMOTION

above:

f (foldr (⊕) e xs) = foldr (⊗) e ′ xs

if f strict

f e = e ′

∀x , y .f (x ⊕ y) = x ⊗ (f y)

The variables (⊗) and e ′ occur on the right-hand side of the main rule but

not the left-hand side, and assignments for these variables will be generated

during verification of the second and third side conditions respectively.

The second complication is the nature of the free variables in promotion

rules. In the example above, x was a variable that took on a value of type

Int , a base type. However, the promotion rule is rather more complicated –

it contains various free variables of function type. In particular, to generate

an appropriate substitution for (⊗) it turns out that we will have to invent

a completely new function.

It is this last difficulty that forms the basis for the work in this the-

sis. The process of inventing completely new functions during matching is

known as higher-order matching, and we give two new algorithms for this

that represent an advance on existing work in the field and are particularly

useful for applying promotion rules. As we described above, the fast reverse

derivation can be achieved using promotion by starting with the expression

fastreverse (foldr (:) [] xs) ys . We shall now sketch the procedure a mechani-

cal system would use to do this; we give more details of our implementation

of this in Chapter 5.

Recalling once more the promotion rule for lists, the first step is to find

an appropriate subexpression of our original expression, and match the left-

hand side of the promotion rule against it. It turns out that the correct

subexpression to choose is fastreverse (foldr (:) [] xs); here we are making use

of currying by giving the fastreverse function only some of its arguments. A

mechanical system can find that this is the subexpression to use by exhaustive

search.

19

CHAPTER 1. 1.2. PROMOTION

Matching then gives us the assignments (f := fastreverse), ((⊕) := (:))

and (e := []). We now verify the side conditions in order. Strictness of

fastreverse follows from strictness of reverse. For the second condition, we

instantiate the left-hand side of the condition using the substitution we have

already calculated, giving fastreverse []. Since the right-hand side of the rule

is just e ′, we could use this value to give an appropriate substitution for it, but

we can do better than this – we can apply term rewriting to this expression,

using rules obtained from the specification of fastreverse, the definition of

reverse and other auxiliary functions such as (++), and any other rules the

user might supply, to give a simplified form. In this instance, we carry out the

following derivation. Notice that our use of expressions in curried form means

that we on occasion need to η-expand by adding in a missing argument; in

this case the expression (++) [] is expanded to the equivalent λzs .[] ++ zs in

the final step of the derivation.

fastreverse []

= {specification of fastreverse}

(++) (reverse [])

= {definition of reverse}

(++) []

= {η-expand by adding an argument zs , definition of (++)}

λzs . zs

Having reached a value which cannot be simplified further, we match the

right-hand side of the rule against this value to give (e ′ := λzs . zs), and we

extend the substitution we have already obtained with this assignment.

Moving on to the third condition, we first notice that we can express the

universal quantification over the variables x and y in terms of equality of

functions. Thus, this side condition is equivalent to

λx y .f (x ⊕ y) = λx y .x ⊗ (f y)

This useful simplification saves us from having to treat universal quantifiers

20

CHAPTER 1. 1.2. PROMOTION

in a special way.

It is here that we find that our policy of rewriting the left-hand side after

instantiating it is crucial. Examining the right-hand side, the one unknown

quantity appearing there is the function (⊗). Unfortunately, it will not be

straightforward to obtain a definition for (⊗). It appears with two arguments,

one of which is the bound variable x and the other is the expression f y . Since

y is also a bound variable, it cannot appear in any substitution for (⊗), and

so to give a definition of (⊗), we will need to find a form for the left-hand

side that only makes use of y in the form f y .

To do this, we apply term rewriting as follows, renaming y to the more

appropriate xs for the purposes of presentation here. Notice the use of the

associativity of (++); this is the crucial fact that any cat-elimination trans-

formation makes use of, and it is thus natural that it should be one of our

rewriting rules.

λx xs . fastreverse (x : xs)

= {specification of fastreverse}

λx xs . (++) (reverse (x : xs))

= {definition of reverse}

λx xs . (++) (reverse xs ++ [x])

= {η-expand, associativity of (++)}

λx xs zs . reverse xs ++ ([x] ++ zs)

= {definition of ++}

λx xs zs . reverse xs ++ (x : zs)

The occurrence of xs is not quite in the form of fastreverse xs that we might

expect we need from looking at the right-hand side of the side condition.

However, we can instantiate the occurrence of f in the right-hand side and

21

CHAPTER 1. 1.2. PROMOTION

rewrite this also:

λx xs . x ⊗ (fastreverse xs)

= {specification of fastreverse}

λx xs . x ⊗ (++ (reverse xs))

We are now left with the problem of matching the expression

λx xs . x ⊗ (++ (reverse xs))

against

λx xs zs . reverse xs ++ (x : zs)

Inspecting this matching problem, we find that (⊗) := λa b ys . b (a : ys) is

the required assignment for (⊗), the only free variable in the first expression.

It is the problem of finding such assignments automatically that this thesis

will address.

We can combine all the assignments we have found and substitute back

into the original rule to give a new subexpression:

foldr (λa b zs . b (a : zs)) (λzs . zs)

Finally, using this to replace the original subexpression in the expression we

started from gives us the required:

foldr (λa b zs . b (a : zs)) (λzs . zs) ys

Crucially, note that it was not necessary to apply any equations or definitions

in more than one direction. Thus, promotion offers us a safe way of mecha-

nising the fast reverse derivation; by eliminating the need for a folding step,

it allows the derivation to be accomplished using a set of rewrite rules that

will never produce an infinite loop in our transformer. The same is true for

other similar derivations, such as minimum depth; we give several examples

in Chapter 6.

22

CHAPTER 1. 1.3. FUSION

1.3 Fusion

Promotion is just one example of fusion, the process of merging the definitions

of two or more functions to provide a definition of a single function that is

equivalent to the sequential composition of those functions. The hope is that

this single function will be somehow more efficient than applying the original

functions. It should be noted that there is some ambiguity in the literature

about these terms; what we describe as promotion has sometimes itself been

referred to as fusion. However, it appears that the majority of work assumes

the more general definition for fusion that we give, and since we wish to

clearly disambiguate the two we have also followed this approach. Below we

survey previous work on fusion and then focus on deforestation and short-cut

deforestation, two techniques that are particularly relevant to this thesis.

Most commonly, a more efficient function can be derived by eliminating

the production of intermediate data structures; if one function produces a

structure which a second function then takes apart, a definition that acts

on the elements of the structure as it is produced without ever explicitly

allocating or deallocating the storage necessary will provide a performance

benefit. Automatic techniques for eliminating intermediate lists were first

put forward by Wadler [94, 95] and later generalised to handle all algebraic

data structures and named deforestation [99].

In order to guarantee the termination of deforestation, some quite tight

syntax restrictions were imposed, which Chin loosened in [17, 18] and then

in [19] gave a means of syntactically preprocessing programs to further extend

the (safe) applicability of deforestation. An alternative relaxation was given

by Sørenson with a semantic based analysis [85].

Gill et al. [37] give a modified approach known as short-cut deforesta-

tion which has been implemented in the Glasgow Haskell Compiler (GHC).

Their method removes Wadler’s guarantee of removing all intermediate lists

in exchange for a simpler algorithm that is applicable to all programs. Only

parts of the program that produce lists using a higher-order function known

as build and consume them using foldr are deforested, but the entire prelude

23

CHAPTER 1. 1.3. FUSION

(the standard library for Haskell) is written in this style wherever possible to

make this quite common. One other disadvantage (which is shared with other

approaches) is that function definitions must be inlined to make programs

susceptible to deforestation, and this is inconvenient to do across module

boundaries. In [20], Chitil gives a type-based analysis that allows some func-

tions to be split into worker and wrapper parts, with only the wrapper section

needing to be inlined to allow deforestation to be applied.

Since people do not generally write their programs in terms of foldr and

build , short-cut deforestation is unlikely to be particularly helpful at optimis-

ing user-supplied functions. Launchbury and Sheard [59] give an algorithm

for warm fusion, which uses the promotion theorem on an identity fold as

we described earlier to automatically derive appropriate forms from recur-

sive programs. They use a heuristic to determine appropriate places in the

program to try this. This has been implemented by Johann and Visser [52]

in the Stratego system [93], and by Nemeth [68] as an optimising pass for

GHC.

Another method of automatically applying fusion is described by Onoue

et al. in [71]. Recursive functions are first expressed in terms of hylomor-

phisms [63], then manipulated using the Acid Rain Theorems [88], which gen-

eralise the rule used in short-cut deforestation, and a “shifting” law which

allows computations to be moved around within the definition of a particular

hylomorphism. This technique has been implemented as an optimising pass

to GHC, with encouraging results.

Other work involving promotion has been carried out by Sheard and Fe-

garas in [82], which gives a normalisation algorithm to automatically improve

programs based on folds, and in [34] Fegaras et al. extend this work by giving

an extended version of folds for programs which recurse over multiple data

structures simultaneously, and provide a generalised promotion theorem for

fusing these extended folds.

Deforestation and promotion are distinct transformations; in general de-

forestation applies to expressions where the outer function consumes a data

24

CHAPTER 1. 1.3. FUSION

structure produced by the inner function, whereas promotion requires that

the inner function be a fold and makes use of subtle properties that show how

the computation in outer function can be broken up and merged with the

individual operations of the fold. They happen to overlap in some cases, such

as the example of calculating the sum of the squares of the elements of a list

that we shall explain in the following section when we discuss deforestation

in more detail, but in general this is not true – the mindepth example from

Section 1.2 is an example of promotion but not deforestation, whereas the

foldr -build fusion of short-cut deforestation is not an instance of promotion.

Supercompilation [90] is a very powerful technique (but currently with few

practical implementations) which generalises both deforestation and partial

evaluation [54]. Partial evaluation focuses on specialising a general program

once specific values have been given for some of its input; supercompilation

takes this a stage further, generating an entirely new program by symbolically

tracing the execution of the original one.

1.3.1 Deforestation

Consider the program

sumsq xs = sum (map square xs)

The expression map square xs generates a list of results which is immediately

consumed by sum. More efficient would be the following:

sumsq [] = 0

sumsq (x : xs) = square x + sumsq xs

Fusing the definitions of sum and square has allowed the construction and

destruction of the intermediate list to be completely eliminated; as each new

element is generated, it is immediately used and thus there is no need to

explicitly create and destroy the constructors that “glue” the list together.

Applying this transformation across a large program can produce quite large

25

CHAPTER 1. 1.3. FUSION

speedups, because the natural style employed by many functional program-

mers involves writing in a modular fashion and passing numerous data struc-

tures between various parts of the program.

The standard method of applying deforestation is to unfold the expres-

sion to be deforested using the relevant definitions. If an intermediate data

structure in that expression can be eliminated, this unfolding should expose

the point at which it generated and then immediately consumed, allowing

these operations to be removed.

For example, consider the above program. For simplicity, assume that

the definitions of sum and map are given as case expressions:

sum xs = case xs of

[] → 0

(x : xs) → x + sum xs

map f xs = case xs of

[] → []

(x : xs) → f x : map f xs

From this, we obtain the following derivation:

sumsq xs

= {definition of sumsq}

sum (map square xs)

= {definition of map}

sum (case xs of

[] → []

(x : xs) → square x : map square xs)

= {(strict) functions distribute through case}

case xs of

[] → sum []

(x : xs) → sum (square x : map square xs)

26

CHAPTER 1. 1.3. FUSION

= {definition of sum}

case xs of

[] → case [] of

[] → 0

(y : ys) → y + sum ys

(x : xs) → case (square x : map square xs) of

[] → 0

(y : ys) → y + sum ys

= {definition of case}

case xs of

[] → 0

(x : xs) → square x + sum (map square xs)

= {definition of sumsq}

case xs of

[] → 0

(x : xs) → square x + sumsq xs

It is the last two steps of this derivation that illustrate the most impor-

tant aspects of deforestation. The first of these, which applies the definition

of case by making use of the known structure of the argument to select one

particular result, is what deforestation is about – it is here that the inter-

mediate list is actually eliminated from our program. The last of these steps

applies the definition of sumsq in reverse, and thus prevents the unfolding

from continuing infinitely. In general, ensuring termination in such a way can

be difficult, and it is this issue that tends to make automatic deforestation

quite complex.

1.3.2 Short-cut deforestation

The idea behind short-cut deforestation is that although in general deforesta-

tion can be difficult to apply in a safe manner, it should be easy to remove

27

CHAPTER 1. 1.3. FUSION

intermediate data structures from certain parts of our program by writing

those parts in terms of specific predefined higher-order functions. The com-

piler can be given special knowledge of these functions, allowing it to safely

and quickly deforest them.

In [37], this idea is applied only to lists, the most common intermediate

structure found in Haskell programs. The higher-order functions in question

are foldr , which we have already described in Section 1.2, and build , which

we shall define shortly. The idea is that functions which create lists should

be defined in terms of build , and those which consume lists should be defined

in terms of foldr . For those which do both, such as map, or those which

consume two lists at once, such as zip, we shall have to choose one option,

which will limit the applicability of short-cut deforestation.

Just as foldr encapsulates the pattern of (recursive) list consumption,

build encapsulates the pattern of list generation. Its definition is deceptively

simple:

build g = g (:) []

In other words, g should be a function that constructs its output list using

its first two parameters for the constructors of that list. Recall that foldr

replaces the constructors of a list with the functions supplied to it; thus, the

following should hold:

foldr f e (build g) = g f e

In other words, instead of first constructing the list with (:) and [] and then

replacing these constructors with f and e, we can directly construct it using

f and e.

There is a slight complication; we have no guarantee that the argument g

to build will actually construct its output list using the supplied parameters.

It could simply make direct use of (:) and [], which are after all globally ac-

cessible constructors. However, foldr does not “care” where the constructors

in the list it consumes came from, and thus if g does not behave as expected

the above equation will not hold.

28

CHAPTER 1. 1.3. FUSION

We refer the reader to [37] for the precise details of how this is solved;

essentially build is given a carefully constructed polymorphic type which

ensures that g is forced to use its arguments to construct its output; the

above law follows as a consequence of the appropriate free theorem [98]. The

definition of build then becomes the following:

build :: ∀ α . (∀ β . (α → β → β) → β → β) → [α]

build g = g (:) []

Informally, the universal quantification of the type variable β in the type

of the argument g is what provides the necessary guarantee; the body of g

cannot “know” anything about the structure of β and is thus forced to use

the supplied arguments to construct values of this type.

For example, consider the sumsq example from above. We can write sum

as a fold and map as a build:

sum xs = foldr (+) 0 xs

map f xs = build g

where g cons nil = h cons nil xs

h cons nil [] = nil

h cons nil (y : ys) = cons (f y) (h cons nil ys)

Applying the foldr -build rule from above to sumsq then immediately gives

us the optimised program.

Short-cut deforestation was originally implemented completely internally

to GHC, both because there was no way for the user to specify optimisations,

and because the “internal” universal quantifier in the definition of build could

not be expressed in the standard Hindley-Milner [66] type system that Haskell

was then based on. Functions in the prelude were defined in terms of foldr

and build wherever possible, so user programs written in terms of them could

be deforested, but the user could not define his or her own functions using

build , and user-defined datatypes could not be deforested at all.

Since then, the type system of Haskell has become richer, and recently

it has become possible to define simple rewrite rules for GHC in Haskell

29

CHAPTER 1. 1.3. FUSION

source files by adding appropriate annotations [77], which are quite similar

(albeit rather less sophisticated) to those we proposed on page 17. As a

result, it is now possible for short-cut deforestation to be completely defined

using mechanisms available to the user, and appropriate folds and builds

can be defined (along with the necessary rewrite rule) to allow user-defined

datatypes to be deforested.

30

Chapter 2

Preliminaries

2.1 The matching problem

Pattern matching has been widely studied in a variety of contexts, most

notably with regard to strings [1, 57], trees [41], and graphs [40]. Here,

we are concerned with a specific variation of tree pattern matching that

applies specifically to λ-expressions. The higher-order nature of this pattern

matching arises from the fact that we wish to synthesise new functions as

part of the process. To avoid confusion with a distinct definition of higher-

order patterns that can be found in the literature (which we discuss later),

we shall henceforth refer to pattern matching as simply “matching”.

At its most general, the matching problem we are interested in can be

stated as follows. Given arbitrary λ-expressions P and T , known as the

pattern and term respectively, find a substitution φ such that φP is equivalent

to T .

Here, “is equivalent to” has intentionally not been precisely defined; λ-

expressions can be equated to each other using three types of equivalence:

• α-conversion. Bound variables can be freely renamed; for example,

λx .x + x = λy .y + y .

• β-reduction. λ-bound variables can be replaced by the appropriate

31

CHAPTER 2. 2.1. THE MATCHING PROBLEM

argument to the λ-abstraction. For example, (λx .x + x) 1 = 1 + 1.

This rule can also be applied in reverse.

• η-conversion. Superfluous combinations of λ-abstraction and function

application can be removed; λx .E x is equivalent to E , so long as x is

not free in E . For example, λx .f x = f , but λx .g x x 6= g x .

Thus, the fully general matching problem requires us to find all substi-

tutions φ such that φP and T are equivalent under all three of the above

rules. Although this is significantly easier than the related problem of uni-

fication, which involves finding all φ such that φP and φT are equivalent,

it is still a hard problem, partly because the set of substitutions is poten-

tially infinite. For example, consider the pattern p q and the term 0; then

p := λy .yn 0, q := λz .z is a valid substitution for any n greater than or equal

to 0.

The usual approach taken in the literature is to choose a particular type

discipline, often from Barendregt’s λ-cube [7] and investigate solutions of the

matching problem within that discipline. Usually, the problem is then further

restricted by order; terms of ground type such as Int or Char (or a base type

variable in the case of polymorphic type systems) are known as first-order,

functions which take first-order terms as parameters are second-order, and

so on. This notion is extended to matching by defining that the order of a

substitution is the maximum order of the terms in its range; then nth-order

matching is the problem of finding all appropriate substitutions of order n

or less.

For the simply-typed λ-calculus, the decision problem – finding whether

or not matches exist, without actually enumerating them – was posed in 1976

by Gerard Huet [45], but is as yet unsolved (in contrast, general unification

is known to be undecidable [39, 43]).

Wolfram [102] gives a procedure is given for finding solutions for the

simply-typed case; it is shown to be sound and terminating (infinite branches

of the search tree which would give sets of solutions similar to those described

32

CHAPTER 2. 2.1. THE MATCHING PROBLEM

above are detected and truncated); it is also conjectured to be complete

(modulo this truncation of infinite sets of results), and if this conjecture

were to be proved then the matching problem would also be decidable. It

was claimed in 1984 that higher-order matching is decidable [55], but no

proof was provided, and the existence of infinite sets of matches would seem

to contradict the claim made there that the matching process converges.

First-order matching is decidable, and an algorithm for finding all so-

lutions (of which there is at most one for any given pattern and term) is

easy to implement. Second-order matching is also decidable, with a finite set

of solutions; an algorithm for finding these was given by Huet and Lang in

1978 [47]. Third- and fourth-order matching are both decidable [31, 72] but

the set of solutions is potentially infinite – algorithms to find a representation

of this set have been given [22]. Finally, a restricted version of the fifth-order

problem is decidable [81].

Going beyond simple typing, matching is undecidable in all the other

systems of the λ-cube [32]. However, there is still an algorithm for generating

all solutions to the second-order problem in the presence of polymorphic

and dependent types, and type constructors [30, 69]. Third-order matching

is also decidable for polymorphically-typed terms [86] and those with type

constructors [87], but undecidable in the presence of dependent types [29].

Another restriction that has been studied is limiting both pattern and

term to be linear λ-terms. These are closely related to Girard’s linear logic

[38]; they restrict all abstractions λx .B contained in the expression so that

B contains precisely one occurrence of x . The matching problem for such

expressions is known to be decidable and an algorithm exists for calculating

them [25].

Finally, the notion of higher-order patterns has been explored in the con-

text of unification. These restrict expressions such that every free variable

should appear together with a list of distinct bound variables as parameters.

General unification for these expressions is known to be decidable with a

single most general solution [65], and a practical implementation has been

33

CHAPTER 2. 2.1. THE MATCHING PROBLEM

given for finding these [70]. These results are also applicable to matching by

simply treating all free variables in the term as constants; this will also have

the consequence that any term will trivially satisfy the restrictions.

For our purposes, a practical program transformation system that makes

use of term rewriting requires a terminating matching algorithm with a finite

set of results. Second-order results turn out not to be adequate for many of

the problems we would like to be able to solve, and likewise the restrictions

imposed by either linearity and higher-order patterns rule out many of these

problems. Since third-order matching can produce an infinite set of results,

this thesis takes the approach of investigating a completely new restriction

on the problem.

Consider the equivalence rules for λ-expressions stated above; it is the

β-reduction rule that introduces difficulties to the matching process. If we

ignore it entirely, it is then straightforward to give a sound and complete

simple matching algorithm; apply exhaustive η-reduction (a procedure that

is guaranteed to terminate) to both pattern and term, and then compare

the two by structural recursion over each of them simultaneously, renaming

bound variables and creating substitutions for free variables as necessary. In

Section 2.6, we give an implementation of this algorithm as an example of

using the framework we shall present shortly.

Since the gap that remains between general matching and this “simple”

matching is the difference between allowing full β-reduction and not permit-

ting it at all, it makes sense to explore restricted forms of this rule instead,

and it is this idea that forms the main thrust of this thesis. We defer discus-

sion of the exact nature of the restrictions we will impose until after we have

introduced some notation.

The other way our algorithms will differ from those in the literature is that

we do not impose any typing discipline on expressions. Thus, our matching

algorithms will be specified and implemented by essentially syntactic ma-

nipulation. They manipulate terms in η-contracted form rather than the

more common η-long form; η-contraction is naturally bounded whereas η-

34

CHAPTER 2. 2.2. NOTATION

expansion requires type-based restrictions to enforce termination. The bene-

fit we gain from this is that our algorithms are more widely applicable; users

of our algorithms are not constrained to languages that use an appropriate

type system. This is likely to be particularly valuable when transforming

languages such as Haskell, for which new extensions for the type system are

regularly suggested and sometimes implemented. It would be rather inconve-

nient if it was necessary to recheck the correctness of the matching algorithm

each time this happened. In addition, the use of η-contracted normal forms

means that if using a complex type system we are spared the complexities

that η-expansion brings [33, 36].

2.2 Notation

2.2.1 Expressions

Expressions are built recursively from variables, constants, λ-abstractions

and function applications. Variables are either local, indicating that they

refer to a binding λ and can only be substituted when being replaced by the

parameter of that λ, or pattern, indicating that they can be freely substituted

for. We use local and pattern instead of the more traditional bound and free

because we shall diverge slightly from standard usage; In particular, when

recursively traversing expressions, a variable shall continue to be considered

local even if the corresponding binding λ is no longer present. Thus, in the

body x + x of the λ-abstraction λx .x + x , x is a local variable.

To make the presentation simpler, we shall use notation to make distinc-

tions between kinds of expressions:

• a, b, c will represent constants.

• p, q , r will represent pattern variables.

• x , y , z will represent local variables.

• Capital letters will represent arbitrary expressions.

35

CHAPTER 2. 2.2. NOTATION

This simplification saves the clutter that using de Bruijn notation [24] or

explicit environments would introduce.

Manipulating λ-expressions often introduces the problem of variable cap-

ture, in which a local variable is substituted into a term which already con-

tains a λ-abstraction involving a variable of the same name. Thus, we assume

that fresh identifiers are introduced as needed or existing variables implicitly

renamed.

Function application is a binary operator, and is written as a space. Ap-

plications with multiple parameters are expressed by repeated uses of this

operator; it is defined to be left-associative and thus F E1 E2 represents the

function F applied to the arguments E1 and E2 in that order. This expression

is also an example of the use of currying; the expression F E1 gives a function

which is then applied to E2. λ-abstraction is written λx .B to represent the

function that when applied to an argument E returns B with all occurrences

of x replaced by E .

The equality operator “=” is defined to be equality modulo α-conversion

only. The operator “'” is used to represent equality modulo α and η-

conversion.

A β-redex is an expression of the form (λx .B) E ; the β-contractum of

such an expression is the term B with all occurrences of x replaced by E .

Similarly, an η-redex is one of the form λx .E x , where E does not contain x ,

with η-contractum E .

An expression is β-normal if it contains no β-redexes and η-normal if

it contains no η-redexes. It is βη-normal (sometimes referred to as just

normal) if it contains neither. An expression is closed if it contains no pattern

variables.

We write E
β→ E ′ to signify that E ′ was obtained by reducing a single

β-redex in E . The relation
β→ ∗ is the reflexive transitive closure of

β→.

The head of an expression is the expression itself if the expression is not

an application, or the head of the function part if it is an application. An

expression is said to be flexible if its head is either a pattern variable or a

36

CHAPTER 2. 2.2. NOTATION

λ-abstraction (we shall not make use of these notions until Section 3.4).

We shall sometimes comment on properties of our algorithms when the

user does choose to use the simply-typed λ-calculus. In this context, the

order of an expression E is the order of its type, defined as follows:

• A base type (Int , Char etc.) is of order 1.

• A function type a → b is of order max (1 + order(a), order(b)).

2.2.2 Subexpressions

An expression S is a subexpression of another expression E if S occurs some-

where within E ; this is written S � E . This also leads to a convenient

notation for stating that S does not occur somewhere within E , which we

write S /� E . A direction is either Func, representing the function part of an

application, Arg to represent the argument part, or Body to represent the

body of a λ-expression. A location is a sequence of directions used to indicate

the position of a subexpression in the expression it was taken from, written

using the syntax 〈Func,Func,Arg ,Body〉. The empty sequence 〈〉 is the lo-

cation representing the root of an expression, and _ is the operator which

joins two sequences one after the other. For convenience we use dir ; loc as

shorthand for 〈dir〉_loc.

2.2.3 Substitutions

We define substitutions as partial functions from pattern variables to closed,

normal expressions. They are denoted by Greek identifiers; if we wish to

give an explicit substitution this will be done by listing the assignments to

variables in the domain of the substitution; so for example

φ = (p := λy .b y x)

makes the indicated assignment to p, but leaves all other variables unchanged.

The identity substitution idSubst is defined as the substitution with an empty

domain.

37

CHAPTER 2. 2.2. NOTATION

Substitutions are applied to expressions by replacing all instances of each

pattern variable in their domain with the image of that pattern variable

under the substitution.

Composition of substitutions φ and ψ is defined by first applying ψ and

then φ:

(φ ◦ ψ) E = φ (ψE)

Composition is associative, and since expressions in the range of a substi-

tution must be closed, if two substitutions have disjoint domains they will

commute.

We say that one substitution φ is more general than another substitution

ψ if there exists a third substitution δ such that

ψ = δ ◦ φ

We write φ ≤ ψ to indicate that φ is more general than ψ. Intuitively,

when φ ≤ ψ, the larger substitution ψ substitutes for variables that φ leaves

unchanged; if we viewed substitutions as sets of assignments to pattern vari-

ables, then ≤ would simply be set inclusion. For example, with φ as above

and ψ specified by

ψ = (p := λy .b y x , q := a (b c))

we have φ ≤ ψ because ψ = δ ◦ φ where

δ = (q := a (b c))

Lemma 2.1. If two substitutions φ and ψ are equally general, they are iden-

tical.

Proof. As we remarked above, we can view ≤ as set inclusion on sets of

assignments, and set inclusion is antisymmetric.

In the special case of the application of β-reduction, we shall extend the

substitution notation to allow local variables in the domain; thus we write

the β-contractum of (λx .B) E as (x := E) B .

Within the context of the simply-typed λ-calculus, the order of a substi-

tution is the maximum order of the terms in its range.

38

CHAPTER 2. 2.2. NOTATION

2.2.4 Meta-programs

We will express the specification and implementation of matching algorithms

as meta-programs acting on expressions. We will use syntax similar to that

of Haskell for these meta-programs, with the addition of the substitution

notation described above. In particular, various definitions shall be given by

pattern matching, in which a function is defined by a list of clauses, each of

which may or may not apply to a particular call to the function. The right-

hand side of the first one that does apply for any individual set of arguments

is used to calculate the result of the function in that case. So for example,

the following program to return the sign of a number treats 0 as a special

case:

sign 0 = 0

sign x = x ÷ abs x

We will use the “≡” operator to signify equivalence of meta-programs (as

well as of logical statements).

2.2.5 Rules

We now introduce the concept of rules to represent matching problems. A

rule is a pair of expressions, written P → T , where P is η-normal and T is

closed and normal. We call P the pattern and T the term of the rule; the

goal of matching will be to find a substition that makes pattern and term

equal.

Rules are denoted by variables X , Y and Z , and sets of rules (also known

as rule sets) by Xs , Ys and Zs . Our notation for rules bears some resemblance

to that used for rewriting or transition systems, but should not be taken as

such.

The measure of a rule is a pair of numbers: the first component is the

number of distinct pattern variables in the pattern, and the second compo-

nent is the total number of symbols in the pattern (where λ and the space

39

CHAPTER 2. 2.3. SPECIFICATION

representing function application are taken to be symbols, but brackets are

not). The measure of a set of rules is also a pair of numbers, which are defined

by summing the first and second components respectively of the measures of

its elements. When Xs and Ys are sets of rules, we shall write Xs � Ys to

indicate that in the lexicographic comparison of pairs, the measure of Xs is

strictly less than the measure of Ys . Note that� is a well-founded transitive

relation.

A substitution φ is said to be pertinent to a rule (P → T) if all variables

in its domain are contained in P . Similarly, a substitution is pertinent to a

set of rules if each variable in its domain is contained in the pattern of one

of the rules (but not necessarily all in the same rule).

The application of a substitution to a rule is defined by σ(P → T) =

σP → T (since T is closed applying a substitution to it would have no

effect). The obvious extension of this definition to a set of rules applies.

The reason that we do not require β-normalness of the pattern in a rule

is that substitution does not preserve this property; we wish to be able to

apply substitutions to rules and have an immediate guarantee that the result

is also a rule.

2.3 Specification

2.3.1 Beta-reduction

We remarked earlier that we would specify our algorithms by restricting the

form of β-reduction allowed in our equality law. If we did allow full β-

reduction, we would define that φ satisfies a rule P → T iff there existed

β-conversions of φP and T that were related by '. Since T is defined to

be normal, and it is known that if repeated application of β-reduction on an

expression terminates then it always terminates with the same result [6], we

can define a function betanormalise that returns this result if it exists, and

40

CHAPTER 2. 2.3. SPECIFICATION

undefined if not, and recast this definition as:

betanormalise (φP) ' T

It is this form of the definition that we will vary, by replacing betanormalise

with other functions that only partially apply β-reduction.

We can define the betanormalise function as a recursive treewalk (making

use of our notational conventions that make a, b, c represent constants, x , y , z

local variables, p, q , r pattern variables and capital letters any expression):

betanormalise c = c

betanormalise x = x

betanormalise p = p

betanormalise (λx .E) = λx .(betanormalise E)

betanormalise (E1 E2) = case E ′1 of

(λx .B) → betanormalise ((x := E ′2)B)

→ E ′1 E ′2

where E ′1 = betanormalise E1

E ′2 = betanormalise E2

The function that applies no β-reduction at all is the identity function id .

We can write it in a recursive form (entirely redundantly), following the same

pattern as above:

id c = c

id x = x

id p = p

id (λx .E) = λx .(id E)

id (E1 E2) = (id E1) (id E2)

Writing the two functions in this form allows us to make explicit the dif-

ferences between them, namely their result in the case that the expression

they are being applied to is a function application. We can parametrize this

41

CHAPTER 2. 2.3. SPECIFICATION

difference in the following definition of reduce, a higher-order function:

reduce app c = c

reduce app x = x

reduce app p = p

reduce app (λx .E) = λx .(reduce app E)

reduce app (E1 E2) = app (reduce app E1) (reduce app E2)

The parameter app is a function that defines what happens to applications;

for example, betanormalise = reduce full and id = reduce none, where:

full (λx .B) E = reduce full ((x := E)B)

full F E = F E

none F E = F E

We shall give more instances of app functions later in the context of the one-

step and two-step matching algorithms. It should be noted that app should

be a function whose role is to perform some (or maybe none) β-reduction

and nothing else. Thus, in general we require that:

F E
β→ ∗ app F E

A consequence of this is that for any expression T , we have that:

T
β→ ∗ reduce app T

We can say something about β-redexes that reduce generates, namely that

they can only be produced by app. This fact will be of use later when

discussing properties of specific instances of reduce.

Lemma 2.2. If

(λx .B) E � reduce app T

then

∃T0,T1 : T0 T1 � T ∧ (λx .B) E � app (reduce app T0) (reduce app T1)

Proof. By case analysis on the definition of reduce and induction on the

structure of T .

42

CHAPTER 2. 2.3. SPECIFICATION

2.3.2 Matches

For a given function app, a substitution φ satisfies, or is a match for, the

rule P → T with respect to app iff

reduce app (φP) ' T

We write this as φ `app P → T , thus

φ `app P → T ≡ reduce app (φP) ' T

We also refer to substitutions as satisfying and being matches for sets of

rules. We say that φ is a general match for the rule P → T if φ is a match

for this rule with respect to full (recall that betanormalise = reduce full).

Lemma 2.3.

φ ◦ ψ `app P → T ≡ φ `app ψ(P → T)

Proof.

φ ◦ ψ `app P → T

≡ {definition of `app}

reduce app ((φ ◦ ψ)P) ' T

≡ {definition of ◦}

reduce app (φ (ψP)) ' T

≡ {definition of `app}

φ `app ψP → T

≡ {definition of substitution on rules}

φ `app ψ(P → T)

Corollary 2.4.

φ ◦ ψ `app Xs ≡ φ `app ψXs

43

CHAPTER 2. 2.3. SPECIFICATION

Lemma 2.5. If φ ≤ ψ, then

φ `app P → T ⇒ ψ `app P → T

Proof. Suppose that δ ◦ φ = ψ. We argue as follows:

φ `app P → T

≡ {definition of `app}

reduce app (φP) ' T

⇒ {claim}

reduce app (δ (φP)) ' T

≡ {value of ψ}

reduce app (ψP) ' T

≡ {definition of `app}

ψ `app P → T

We made a claim that if reduce app (φP) ' T , then we also have that

reduce app (δ (φP)) ' T . This claim is true because T contains no pattern

variables, and so neither does reduce app (φP). Thus, if any pattern variables

do appear in the expression φP , their value does not affect the result of

applying reduce app to it, and so any substitution δ can freely substitute for

them without changing this value.

Corollary 2.6. If φ ≤ ψ, then

φ `app Xs ⇒ ψ `app Xs

2.3.3 Match sets

If Xs is a set of rules, then we define the match set with respect to app of Xs

to be a set of substitutions M such that:

• For all φ: φ `app Xs iff there exists ψ ∈M such that ψ ≤ φ.

44

CHAPTER 2. 2.4. IMPLEMENTATION

• For all φ1, φ2 ∈M: if φ1 ≤ φ2, then φ1 = φ2.

The first condition is a soundness and completeness property. The back-

wards direction is soundness; it says that all substitutions in a match set

satisfy the rules. The forwards implication is completeness; it says that ev-

ery match is represented, either by itself or by a more general match. The

second condition states that there are no redundant elements in a match set.

It should be noted that this defines the unique match set for a set of

rules; given the (infinite) set of all possible matches we could cut this down

to the match set by removing all elements for which a more general match

also existed.

With these definitions done, we note we will give the specifications of our

algorithms by defining an appropriate app function and giving conditions

under which they produce match sets with respect to this app function.

2.4 Implementation

We shall also follow a common pattern in implementing our algorithms; we

take the approach of progressively breaking down a set of rules into smaller

rules, until none remain.

In the interests of producing algorithms that can be efficiently imple-

mented, we shall generally represent collections as bags. As a result, it will

be incumbent on us to show that these bags do not contain duplicate ele-

ments where necessary for the purposes of verifying non-redundancy condi-

tions. Bags are denoted by the brackets [[and]], bag union by the operator

+, and membership by ∈ as with sets.

Our algorithms all start with the function matches , which takes a set of

rules and returns a set of matches. As with our specification, we parameterise

45

CHAPTER 2. 2.4. IMPLEMENTATION

this function by app:

matches app :: [[Rule]]→ [[Subst]]

matches app [[]] = [[idSubst]]

matches app ([[X]] + Xs) = [[(φ ◦ σ) | (σ,Ys) ∈ resolve app X ,

φ ∈ matches app (σ (Xs + Ys))]]

The empty set of rules gives a singleton match set containing the identity

substitution. For a non-empty set of rules [[X]] + Xs , X is broken down (in

zero or more ways) into a set of smaller rules Ys along with a substitution

σ that makes Ys equivalent to X and which represents the “result so far”.

The new set Ys is combined with the old set Xs , and the substitution σ is

applied to the result of the combination to give a new set of rules to pass to

a recursive call to matches . Finally, σ is composed with each of the results

of the recursive call to return a match.

The key part to note in the above definition is the function resolve, which

corresponds closely to the logic programming concept of “resolution”. It is in

this function that the crucial work of breaking a rule down into a substitution

and a set of smaller rules is done. In this thesis, the implementation of

the matching algorithms presented are all based around the above matches

function, differing only in specific parts of the definition of resolve.

We can think of the matching process described by matches as building

a tree whose nodes are rule sets and whose edges are substitutions. The tree

is rooted at a node consisting of the original rule set; to grow the tree, a

previously unconsidered node with a non-empty rule set is chosen. This rule

set is represented by the parameter [[X]] + Xs in the definition of matches

above. The order in which unconsidered nodes are chosen does not affect the

final result, since the procedure is guaranteed to terminate with a result that

is the unique match set (as we shall show later).

The rule X is then selected from the rule set. Applying resolve to X

gives a (possibly empty) list of (substitution, rule set) pairs. For each pair

(σ,Ys), a new node is created, linked to the original node by an edge labelled

46

CHAPTER 2. 2.4. IMPLEMENTATION

with the substitution σ; the node itself is labelled with the residual rule set

σ (Xs +Ys), where Xs is the rule set from the original node with X removed.

This procedure is repeated until no unconsidered nodes remain. At this

point, the nodes at the leaves of the tree that are labelled with empty rule

sets represent successful matches – they correspond to the first clause in

the definition of matches above. For each of these leaves the match itself

can be recovered by traversing the tree from the leaf to the root, composing

the substitutions found on edges. Since substitutions are applied to the

residual rule sets as they are generated, all the substitutions will have disjoint

domains, and so it does not matter in what order they are composed.

We hope that considering the matching process in terms of such trees will

provide an intuitive means of understanding it. We shall provide an example

of one for each specific definition of resolve that we present, in Sections 2.6,

3.2 and 4.2 – for an immediate example, see page 61.

2.4.1 Specification of resolve

For a particular app function, suppose that

resolve app X = [[(σ0,Ys0), (σ1,Ys1), . . . , (σk ,Ysk)]]

We require that

(1) For all substitutions φ:

(φ `app X) ≡
∨

i

(φ `app Ysi ∧ σi ≤ φ)

(2) For all substitutions φ and indices i and j :

(φ `app Ysi) ∧ (φ `app Ysj) ⇒ i = j

(3) For each index i , σi is pertinent to X .

(4) The pattern variables in Ysi are contained in the pattern variables of X .

47

CHAPTER 2. 2.4. IMPLEMENTATION

(5) For each index i :

Ysi � X

(1) is a soundness and completeness condition: it says that all relevant

matches can be reached via resolve, and that resolve stays true to the original

set of rules. (2) states that resolve should not return any superfluous results.

It should be noted that this condition does not mention σi or σj , so it is

possible that a reasonable definition of resolve might exist which violates

this specification by producing two (σ,Ys) pairs in which the two values for

Ys were the same but the two σs were different. However, the definition that

we shall give does not have this property.

(3) and (4) are technical requirements we need to prove the non-redundancy

of matches . Finally, (5) states that we make progress by applying resolve;

i.e. that the process of breaking down the set of rules will eventually termi-

nate. Note that the statement that Ysi is a set of rules imposes an implicit

condition on each member; the pattern is η-normal and the term normal.

2.4.2 Implementing resolve

Table 2.1 gives a definition for resolve, which once again is parametrised by

app. This definition defers the case where the pattern is a function applica-

tion to the function appresolve; the main work of this thesis will be to give

appropriate definitions of appresolve for different app functions.

The first clause says that two local variables match only if they are equal.

If they are, the identity substitution is returned along with an empty set of

rules to indicate that no more rules need to be solved to make the expressions

equal. Similarly, the second clause states the same principle for constants.

The third clause says that we can solve a rule (p → T) where the pattern

is a pattern variable by making an appropriate substitution. Such a substi-

tution can only be made, however, if T does not contain any local variables

occurring without their enclosing λ; otherwise it would move these variables

out of scope.

48

CHAPTER 2. 2.4. IMPLEMENTATION

X resolve app X

x → y [[(idSubst , [[]])]], if x = y

[[]], otherwise

a → b [[(idSubst , [[]])]], if a = b

[[]], otherwise

p → T [[(p := T , [[]])]], if T does not contain
unbound local variables

[[]], otherwise

(λx .P)→ (λx .T) [[(idSubst , [[P → T]])]]

(λx .P)→ T [[(idSubst , [[P → (T x)]])]]

(F E)→ T [[(idSubst ,Ys) |Ys ∈ appresolve app F E T]]

P → T [[]]

Table 2.1: Definition of resolve

Next, we consider matching of λ-abstractions (λx .P) and (λx .T). Here it

is assumed that the clauses are applied modulo renaming, so that the bound

variable on both sides is the same, namely x . To match the λ-abstractions

is to match their bodies; note that we have already dealt with the problem

of variable capture above.

Since our definition of equality applies modulo η-conversion, we have

to consider the possibility that P is a λ-abstraction but T is not (if the

reverse is true, one of the other clauses will apply instead). In this case we

simply replace T by its equivalent (λx .T x) and continue; for the purposes

of satisfying the progress requirement on resolve we also immediately apply

the previous rule.

If the pattern is a function application then we choose the identity sub-

stitution, and delegate the task of generating new sets of rules to appresolve.

Finally, if none of the other rules apply then no matches exist.

49

CHAPTER 2. 2.5. PROOF OF CORRECTNESS

2.5 Proof of correctness

Our next task is to prove that the definitions above meet our specification,

namely that matches does return a match set. To do this, we first show

that this is the case given a definition of resolve that satisfies the specifica-

tion in Section 2.4.1. We then prove that, given appropriate conditions on

appresolve, the definition of resolve given in Section 2.4.2 is correct.

2.5.1 Correctness of matches

We have to verify two properties:

• For each substitution φ and set of rules Xs :

(φ `app Xs) ≡ ∃ψ ∈ matches app Xs : ψ ≤ φ

• For all substitutions φ and ψ and sets of rules Xs :

(φ, ψ ∈ matches app Xs ∧ φ ≤ ψ) ⇒ (φ = ψ)

For the first condition (soundness and completeness), we proceed by in-

duction on �. For the empty set of rules,

φ `app [[]]

≡ {definition of `app on a set of rules}

True

≡ {definition of idSubst , ≤}

idSubst ≤ φ

≡ {definition of matches app [[]]}

∃ψ ∈ matches app [[]].ψ ≤ φ

Next, we consider the case of a non-empty set of rules [[X]] + Xs . Suppose

resolve app X = [[(σ0,Ys0), (σ1,Ys1), . . . , (σk ,Ysk)]]

50

CHAPTER 2. 2.5. PROOF OF CORRECTNESS

Then,

φ `app ([[X]] + Xs)

≡ {definition of `app on set of rules}

φ `app X ∧ φ `app Xs

≡ {soundness and completeness of resolve}

(
∨

i φ `app Ysi ∧ σi ≤ φ) ∧ φ `app Xs

≡ {(∧) distributes over (∨)}∨
i(φ `app Ysi ∧ σi ≤ φ ∧ φ `app Xs)

≡ {definition of generality (≤)}∨
i(φ `app Ysi ∧ (∃δ.φ = δ ◦ σi) ∧ φ `app Xs)

≡ {predicate logic}∨
i(∃δ.φ `app Ysi ∧ φ = δ ◦ σi ∧ φ `app Xs)

≡ {δ ◦ σi `app Xs ≡ δ `app (σi Xs) (Corollary 2.4)}∨
i(∃δ.φ = δ ◦ σi ∧ δ `app (σi Ysi) ∧ δ `app (σi Xs),)

≡ {definition of `app on list of rules}∨
i(∃δ.φ = δ ◦ σi ∧ δ `app (σi (Xs + Ysi)))

≡ {progress of resolve ⇒ Xs + Ysi � [[X]] + Xs ; induction}∨
i(∃δ.φ = δ ◦ σi ∧ (∃χ ∈ matches app (σi (Xs + Ysi)) : χ ≤ δ))

≡ {predicate logic}∨
i(∃χ ∈ matches app (σi (Xs + Ysi)) : ∃δ : φ = δ ◦ σi ∧ χ ≤ δ)

≡ {definition of ≤}∨
i(∃χ ∈ matches app (σi (Xs + Ysi)) : ∃δ, γ : φ = δ ◦ σi ∧ γ ◦ χ = δ)

≡ {backwards, choose δ = γ ◦ χ}∨
i(∃χ ∈ matches app (σi (Xs + Ysi)) : ∃γ.γ ◦ χ ◦ σi = φ)

≡ {definition of ≤}∨
i(∃χ ∈ matches app (σi (Xs + Ysi)) : χ ◦ σi ≤ φ)

≡ {definition of matches , take ψ = χ ◦ σi}

51

CHAPTER 2. 2.5. PROOF OF CORRECTNESS

∃ψ ∈ matches app ([[X]] + Xs) : ψ ≤ φ

It remains to prove non-redundancy of matches app Xs ; we first prove by

induction over the measure of a rule set that the substitutions returned by

matches app Xs are closed and pertinent to Xs . Clearly the identity sub-

stitution is pertinent to any rule set, so the base case for the empty rule

set is satisfied. For the case of matches app ([[X]] + Xs), we know that the

substitution σ returned by resolve is pertinent to X , and by the induction

hypothesis φ is pertinent to σ(Xs + Ys).

Since any pattern variables in Ys are also in X , (φ ◦ σ) is pertinent to

[[X]] + Xs , thus completing the proof.

Let us now move on to the proof of non-redundancy, which also proceeds

by induction on the measure of a rule set. The base case is trivially satisfied

since we only return a single substitution for the empty rule set. For the step

case, let φ and ψ be elements of matches app [[X]]+Xs . Furthermore, assume

that φ ≤ ψ. From the definition of matches , there exist (σi ,Ysi), (σj ,Ysj)

in resolve app X such that:

∃φ′ ∈ matches app (σi (Xs + Ysi)) : φ = φ′ ◦ σi

∃ψ′ ∈ matches app (σj (Xs + Ysj)) : ψ = ψ′ ◦ σj

From the soundness of resolve, we have that

φ `app Ysi ∧ ψ `app Ysj

Since φ ≤ ψ, we have by Lemma 2.6 that:

ψ `app Ysi ∧ ψ `app Ysj

Thus, by the non-redundancy of resolve, we have that i = j .

Now, since φ ≤ ψ, there exists δ such that δ◦φ = ψ. Therefore, δ◦φ′◦σi =

ψ′ ◦σi . We know that φ′ and ψ′ are pertinent to σi(Xs + Ys), so they cannot

make any changes to variables which are changed by σi .

Construct δ′ by restricting the domain of δ to variables not changed by

σi . Now consider a pattern variable p. If p is changed by σi , it cannot be

52

CHAPTER 2. 2.5. PROOF OF CORRECTNESS

changed by φ′, ψ′ or δ′, and so (δ′ ◦ φ′)p = ψ′p. If p is not changed by σi ,

then σip = p and so (δ′ ◦ φ′)p = ψ′p.

Therefore δ′◦φ′ and ψ′ are equal on all pattern variables, and so δ′◦φ′ = ψ′

and thus φ′ ≤ ψ′. We can now apply the induction hypothesis to give φ′ = ψ′

and so φ = ψ.

2.5.2 Correctness of resolve

In order to prove this definition of resolve correct, we have to satisfy the five

proof obligations listed in Section 2.4.1, and verify the validity of each rule

generated.

In fact, all of these obligations save the first are easy to check for each

case except that where the pattern is a function application. Since each rule

set has at most one member the non-redundancy condition (2) is obviously

true; a non-identity substitution is only generated when matching a pattern

variable against a closed term, so (3) is met, and it is similarly easy to verify

(4) and (5), and that each generated rule is valid, by inspection. This just

leaves the soundness and completeness condition (1).

2.5.2.1 Simplifying the proof obligation

The definition of `app means that it will frequently be necessary to reason

about ('), that is equality modulo η-reduction. This can sometimes be

rather complicated, so we first show how (') can be eliminated from the

definition. Recall that reduce was defined by:

reduce app c = c

reduce app x = x

reduce app p = p

reduce app (λx .E) = λx .(reduce app E)

reduce app (E1 E2) = app (reduce app E1) (reduce app E2)

53

CHAPTER 2. 2.5. PROOF OF CORRECTNESS

We now define reduce ′ as follows:

reduce ′ app c = c

reduce ′ app x = x

reduce ′ app p = p

reduce ′ app (λx .E) = etared (λx .(reduce ′ app E))

reduce ′ app (E1 E2) = etanormalise

(app (reduce ′ app E1) (reduce ′ app E2))

where etared is defined as the function that strips off a single outer η-redex

from an expression if one exists, and otherwise leaves it unchanged:

etared E = F if E = λx .F x , x /� F

E otherwise

Now, since reduce ′ removes η-redexes at any point where it might oth-

erwise have generated them, we have that etanormalise (reduce app E) =

reduce ′ app E . Although this fact is true for all expressions E , we will later

want to simplify the etanormalise (app (reduce app E1) (reduce app E2)) ele-

ment in the definition of reduce ′ for particular versions of app, and we there-

fore restrict reduce ′ to being applied to η-normal arguments only.

Now, given a substitution φ and a rule P → T , we have the following:

φ `app P → T

≡ {definition of `app}

reduce app (φP) ' T

≡ {T normal}

etanormalise (reduce app (φP))) = T

≡ {φ and P η-normal guarantees φP η-normal}

reduce ′ app (φP) = T

This equivalent form for the definition of `app will prove useful in the following

proofs. In each of these proofs, the goal is to prove that a specific clause of the

54

CHAPTER 2. 2.5. PROOF OF CORRECTNESS

implementation of resolve satisfies the soundness and completeness condition

(1) of Section 2.4.1, which for convenience we rephrase here as:

φ `app X ≡ ∃(Ys , σ) ∈ resolve app X : φ `app Ys ∧ σ ≤ φ

2.5.2.2 Matching local variables

X resolve app X

x → y [[(idSubst , [[]])]], if x = y

[[]], otherwise

φ `app x → y

≡ {property of `app}

reduce ′ app (φx) = y

≡ {x is a local variable and cannot be substituted}

reduce ′ app x = y

≡ {definition of reduce ′}

x = y

≡ {predicate logic, vacuous truths about `app and ≤}

φ `app [[]] ∧ idSubst ≤ φ, if x = y

False, otherwise

2.5.2.3 Matching constants

X resolve app X

a → b [[(idSubst , [[]])]], if a = b

[[]], otherwise

φ `app a → b

≡ {property of `app}

reduce ′ app (φa) = b

55

CHAPTER 2. 2.5. PROOF OF CORRECTNESS

≡ {a is a constant and cannot be substituted}

reduce ′ app a = b

≡ {definition of reduce ′}

a = b

≡ {predicate logic, vacuous truths about `app and ≤}

φ `app [[]] ∧ idSubst ≤ φ, if a = b

False, otherwise

2.5.2.4 Matching against a pattern variable

X resolve app X

p → T [[(p := T , [[]])]], if T does not contain
unbound local variables

[[]], otherwise

φ `app p → T

≡ {property of `app}

reduce ′ app (φp) = T

≡ {expressions in the range of a substitution are normal}

φp = T

≡ {property of substitution}

((p := T) ≤ φ) ∧ T does not contain unbound local variables

≡ {predicate logic, vacuous truth about `app}

φ `app [[]] ∧ (p := T) ≤ φ, if T does not contain
unbound local variables

False, otherwise

2.5.2.5 Matching λ-abstractions

X resolve app X

(λx .P)→ (λx .T) [[(idSubst , [[P → T]])]]

56

CHAPTER 2. 2.5. PROOF OF CORRECTNESS

φ `app (λx .P)→ (λx .T)

≡ {definition of `app}

reduce app (φ(λx .P)) ' λx .T

≡ {property of substitution}

reduce app (λx .(φP)) ' λx .T

≡ {definition of reduce}

λx .reduce app (φP) ' λx .T

≡ {property of '}

reduce app (φP) ' T

≡ {definition of `app , vacuous truth about ≤}

φ `app P → T ∧ idSubst ≤ φ

2.5.2.6 Matching against a λ-abstraction

X resolve app X

(λx .P)→ T [[(idSubst , [[P → (T x)]])]]

Here we make use of the fact that clauses are applied in order to assert that

T is a normal expression that is not a λ-abstraction. This is important to

guarantee that T x is normal.

φ `app (λx .P)→ T

≡ {definition of `app}

reduce app (φ(λx .P)) ' T

≡ {property of substitution}

reduce app (λx .(φP)) ' T

≡ {definition of reduce}

λx .reduce app (φP) ' T

≡ {property of '}

λx .reduce app (φP) ' λx .T x

57

CHAPTER 2. 2.5. PROOF OF CORRECTNESS

≡ {property of '}

reduce app (φP) ' T x

≡ {definition of `app , vacuous truth about ≤}

φ `app P → T x ∧ idSubst ≤ φ

2.5.2.7 Failure to match

X resolve app X

P → T [[]]

φ `app P → T

≡ {property of `app}

reduce ′ app (φP) = T

⇒ {definition of reduce ′}

(∃c.φP = c ∧ T = c)

∨ (∃x .φP = x ∧ T = x)

∨ (∃B .φP = λx .B)

∨ (∃E1,E2 : φP = E1 E2)

⇒ {property of substitution}

(∃p.P = p)

∨ (∃c.P = c ∧ T = c)

∨ (∃x .P = x ∧ T = x)

∨ (∃B .P = λx .B)

∨ (∃E1,E2.P = E1 E2)

We again make use of the fact that clauses of resolve are applied in

order; since each of the cases in this condition has been covered by previous

clauses, it evaluates to False in this context, which is equivalent to saying that

resolve app (P → T) has no members, as required. The reverse implication

follows trivially since False can imply anything.

58

CHAPTER 2. 2.5. PROOF OF CORRECTNESS

2.5.2.8 Matching against an application

Thus, we have shown that resolve satisfies its specification for all clauses

except that where the pattern is a function application. To complete the

proof, we derive appropriate conditions on appresolve. For the soundness

and completeness condition:

φ `app F E → T

≡ {property of `app}

reduce ′ app (φ(F E)) = T

≡ {property of substitution}

reduce ′ app ((φF) (φE)) = T

≡ {definition of reduce ′}

etanormalise (app (reduce ′ app (φF)) (reduce ′ app (φE))) = T

≡ {condition on appresolve app}

∃Ys ∈ appresolve app F E T .φ `app Ys

Similarly, conditions (2), (4) and (5) give rise to analogous conditions

on appresolve app. Condition (3) is trivially satisfied since the substitu-

tion returned is idSubst . Thus, we are left with the following conditions

on appresolve app:

Suppose that appresolve app F E T = [[Ys1, ...,Ysk]]. Then we require

that:

{1} For all substitutions φ:

etanormalise (app (reduce ′ app (φF)) (reduce ′ app (φE))) = T

≡∨
i φ `app Ysi

{2} For all substitutions φ:

(φ `app Ysi) ∧ (φ `app Ysj) ⇒ i = j .

59

CHAPTER 2. 2.6. EXAMPLE : SIMPLE MATCHING

{3} The pattern variables in Ysi are contained in the pattern variables of

F E .

{4} For each index i :

Ysi � (F E → T) .

2.6 Example : Simple matching

In order to provide a simple demonstration of the above framework, we

present an algorithm which implements simple matching. The app function

for this case is the none function we described earlier:

none F E = F E

It is straightforward to define appresolve none:

appresolve none F E (T0 T1) = [[[[F → T0,E → T1]]]]

appresolve none F E T = [[]], if T 6= T0 T1

If the term is also a function application, then we simply match F against

the function part and E against the argument part. Otherwise, there are no

matches.

We show a matching tree constructed in the manner described on page 46

for the matching problem p q q → 1 + 1 in Figure 2.1. Note that for each

node, we select the first rule in the rule set for applying resolve.

The proof of correctness is quite simple. For condition {1}:

etanormalise (none (reduce ′ none (φF)) (reduce ′ none (φE))) = T

≡ {definition of none, φ,F ,E η-normal}

(reduce ′ none (φF)) (reduce ′ none (φE)) = T

≡ {definition of =}

T = T0T1 ∧ reduce ′ none (φF) = T0 ∧ reduce ′ none (φE) = T1

60

CHAPTER 2. 2.6. EXAMPLE : SIMPLE MATCHING

-

-
-

-
-
-

-
-

-

p q q 1 + 1

p q (+) 1
q 1

p (+)
q 1
q 1

p := (+)

q 1
q 1

q := 1

1 1

Figure 2.1: A simple matching tree for p q q → 1 + 1

≡ {definition of `none}

T = T0T1 ∧ φ `none {F → T0,E → T1 }

≡ {definition of appresolve none}

∃Ys ∈ appresolve none F E T .φ `none Ys

Condition {2} follows automatically since appresolve none returns at most

one result; {3} is obviously satisfied since the only new rules generated have

F and E as patterns, and finally {4} is satisfied since breaking down the

pattern F E into individual rules in F and E removes one operator.

Note that simple match sets will contain at most one match, since the

definition of appresolve none returns at most one set of rules, and each of the

clauses in resolve also either return one set of rules or at most one match.

This means that the specification for simple matching can be simplified

somewhat from the general specification given in Section 2.3.3, since the

non-redundancy condition is trivially satisfied. Also, since P is η-normal,

61

CHAPTER 2. 2.6. EXAMPLE : SIMPLE MATCHING

reduce ′ none P = P , and so the specification becomes

φ ∈ matches none [[P → T]] ≡ φP = T ∧ ∀ψ : ψP = T ⇒ φ ≤ ψ

We can say something about the relationship between simple matching

and general matching:

Lemma 2.7. If φ is a first-order general match for the rule P → T , with P

β-normal, then φ is also a simple match for this rule.

Proof. First, suppose φP contains a β-redex (λx .B) E . Since P is β-normal,

the redex was not present in P , and since expressions in the range of φ are

normal, it was not present in φ. Therefore, P contained an expression of the

form p E ′, with φp = λx .B and φE ′ = E . But φ is a first-order match, and

λx .B is a second-order expression. Thus, φP is β-normal.

Therefore,

reduce none (φP)

= {definition of reduce,none}

φP

= {φP β-normal}

betanormalise(φP)

' {φ is a general match}

T

Therefore φ is a simple match between P and T .

The simple matching algorithm also sometimes returns results that are not

first-order. For example, consider the pattern p 1 1 and the term 1 + 1. Then

simple matching gives the substitution p := (+), a second-order match. This

is a pattern that we shall see repeated with the matching algorithms in this

thesis – for each, we shall prove that they return all matches of a certain

order or below, but also show that they return some extra results.

62

Chapter 3

One-step matching

In this chapter, we introduce the first of the matching algorithms that will

follow the framework we have laid out. It is named one-step matching because

the reduce function we shall define for it carries out one parallel β-reduction

step; we shall elaborate on this informal description later. This work has

previously been published in [27] and will be published in journal form in [28].

The standard matching algorithm used in program transformation sys-

tems such as KORSO [58] is the algorithm given by Huet and Lang in

1978 [47]; this algorithm is complete for all second-order matches in the

simply-typed λ-calculus, but this is inadequate for even some quite simple

transformations, such as the cat-elimination required for fast reverse and oth-

ers. The one-step algorithm returns all second-order results, but also gives

some extra results which in many cases overcome this inadequacy.

3.1 Specification

We shall now define once, the app function that shall specify the one-step

algorithm:

once (λx .B) E = (x := E)B

once F E = F E

63

CHAPTER 3. 3.1. SPECIFICATION

For convenience, we shall define step = reduce once. Recall that we can write

betanormalise as reduce full , where:

full (λx .B) E = reduce full ((x := E)B)

full F E = F E

Thus, step differs from betanormalise in that once step has reduced a β-redex

by substituting an argument for a formal, it does nothing more to the result,

whereas betanormalise would continue to reduce it if necessary. For example,

step ((λx .x 1) (λy .y + y)) = (λy .y + y) 1

whereas

betanormalise ((λx .x 1) (λy .y + y)) = 1 + 1

Intuitively, step can be thought of as applying one parallel reduction step

to its argument; it conducts a bottom-up sweep, reducing redexes as it finds

them. However, it should be noted that step does not correspond to similar

notions of parallel β-reduction in the literature; a more common approach is

that of finite developments [6]. A single (complete) finite development first

marks all β-redexes in the original expression, then reduces just the marked

redexes. In contrast, step will also reduce β-redexes that appear when the

left-hand side of an application reduces to a λ-abstraction by a recursive call

to step, thus:

step (((λx .x) (λx .x)) ((λx .x) (λx .x))) = λx .x

In contrast, a single complete finite development of the same term would

produce (λx .x) (λx .x), but it would require two complete finite developments

to completely reduce this expression.

An interesting property of step is that if applied enough times, it will

always produce the same result as betanormalise:

Lemma 3.1. If betanormalise E exists, then

∃n : stepn E = betanormalise E

64

CHAPTER 3. 3.1. SPECIFICATION

Proof. If E is strongly normalising, i.e. has no infinite reduction sequences,

then this is immediate (as is the existence of betanormalise E) by the fact

that step will always reduce at least one β-redex if any exist in its parameter.

In particular all terms which can be given types in any system of Barendregt’s

λ-cube satisfy this property [7].

In the general case, it is necessary to appeal to some theory from the

untyped λ-calculus, which can be found in Section 13.2 of [6]. We sketch

a proof by contradiction: suppose that there does not exist n such that

stepn E = betanormalise E . Then for all n, stepn E contains a β-redex and

so stepn E 6= stepn+1 E .

Now, each application of step can be expressed as a sequence of reductions

of individual β-redexes; for example the evaluation of step ((λxy .x + y) 0 1)

is:

(λxy .x + y) 0 1
β→ (λy .0 + y) 1

β→ 0 + 1

The λs in a term can be ordered by their left-to-right position when the term

is written out; this induces an ordering on the β-redexes of the term. If

step E 6= E , then at least one of the elements of the reduction sequence from

E to step E will involve reducing the leftmost β-redex of the current term.

Thus, there is an infinite reduction sequence starting from E containing

an infinite number of reductions of leftmost β-redexes. Such a sequence

is known as a infinite quasi leftmost reduction sequence, and by Theorem

13.2.6 of [6], its existence implies that E has no β-normal form and thus that

betanormalise E cannot exist.

In particular, if E does not contain a λ-abstraction applied to a term

that reduces to another λ-abstraction then n = 1. This claim will form the

basis of our proof that one-step matching returns at least as many matches

as Huet and Lang’s algorithm.

As remarked earlier, the one-step algorithm operates on untyped terms

and does not depend on a particular typing discipline for its correctness.

However, if we use the simply-typed lambda calculus (and run the algorithm

65

CHAPTER 3. 3.1. SPECIFICATION

ignoring the type information), the algorithm does return all matches of

second-order or lower, so long as the pattern does not contain any β-redexes.

However, it is not limited to second-order matches – in Section 3.1.1, we

give an example of a third-order match which satisfies the specification of

one-step matching.

To show that our algorithm returns all matches of second-order or lower,

consider a rule P → E , where P does not contain any β-redexes. (Recall

that in a rule, the term E is always normal and therefore free of β-redexes.)

Let φ be a general match between P and E . Furthermore, assume that φ

does not contain any terms of order greater than 2. We aim to show that φ

is in the match set of P → E ; the proof is by contradiction.

Suppose that φ is not represented in the match set. Then by com-

pleteness, we have step(φP) 6' E . Since φ is a general match between

P and E , betanormalise (φP) ' E , and so betanormalise (step (φP)) '
betanormalise (φP) 6' step (φP). Therefore step(φP) contains a β-redex, the

left-hand side of which is of at least second-order (since a first-order term

cannot occur on the left-hand side of a function application). By Lemma 3.4

below, φP contains a β-redex with left-hand side of at least third-order.

Since both P and the expressions in the range of φ are β-normal, P contains

a subexpression of the form p E , where p is mapped to a λ-abstraction of at

least third-order by φ. But this contradicts our assumptions on φ.

Before stating and proving Lemma 3.4, we prove the following technical

lemma and corollary. Readers who are not interested in the details should

skip to Section 3.1.1.

Lemma 3.2. Suppose T
β→ S.

(1) If S = λx .B where λx .B is of order n then either T is a λ-abstraction

of order n or it contains a β-redex whose left-hand side is of order n or

higher.

(2) If (λx .B) E � S where λx .B is of order n, then T contains a beta-redex

whose left-hand side is of order n or higher.

66

CHAPTER 3. 3.1. SPECIFICATION

Proof.

(1) If T = λx .B ′ with B ′
β→ B , the result is immediate.

Otherwise, the definition of
β→ implies that T = (λy .C) F , with (y :=

F) C = λx .B . Then either:

• C = y with F = λx .B . Then since F is an expression of order n,

λy .C is a expression of order n + 1 and T is a β-redex as required.

• C = λx .B ′ with (y := F)B ′ = B . Then B ′ is of the same order as

B and so T is a β-redex whose left-hand side is of order n or higher.

(2) This part is by induction on the size of T . Suppose that for all expressions

smaller than T , property (2) holds. Now, either:

• T = T0 T1, S = S0 T1, and T0
β→ S0. If (λx .B) E � T1 the result

is trivial. If (λx .B) E � S0 then it follows from the induction hy-

pothesis. Otherwise S0 = λx .B , T1 = E . By (1), either T0 is a

λ-abstraction of order n and so T is a β-redex as required, or T0

contains the required β-redex.

• T = T0 T1, S = T0 S1, and T1
β→ S1. If (λx .B) E � T0 the re-

sult is trivial. If (λx .B) E � S1 then it follows from the induction

hypothesis. Otherwise T0 = λx .B and so T is the required β-redex.

• T = λy .T ′, S = λy .S ′, T ′
β→ S ′. The result follows from the

induction hypothesis.

• T = (λy .C) F , S = (y := F) C . Either:

– (λx .B) E � F . The result is immediate.

– (λx .B ′) E ′ � C where λx .B ′ is of order n. The result is imme-

diate.

– y E ′�C and F = λx .B . Then λy .C is a λ-abstraction of order

n + 1.

67

CHAPTER 3. 3.1. SPECIFICATION

Corollary 3.3. (1) and (2) of Lemma 3.2 are also true if T
β→ ∗ S.

Proof. This is trivially true for T = S , and so is true for any T and S by

induction on the length of the reduction sequence T
β→ ∗ S .

Lemma 3.4. If step T contains a β-redex (λx .B) E, where λx .B is an ex-

pression of order n, then T contains a β-redex (λy .C) F , where λy .C is an

expression of order n + 1 or higher.

Proof. The proof is by induction on the size of T . Suppose that the result

is true for all expressions smaller than T . By Lemma 2.2,

∃(T0 T1) � T : (λx .B) E � once (step T0) (step T1)

If step T0 is not a λ-abstraction, then

once (step T0) (step T1) = (step T0) (step T1)

Therefore, (λx .B) E � step T0 or (λx .B) E � step T1, and the result holds by

the induction hypothesis.

Otherwise, step T0 = λy .C , and therefore

once (step T0) (step T1) = (y := step T1) C

Either:

• (λx .B) E � step T1 (and y occurs in C). The result holds by the in-

duction hypothesis.

• (λx .B ′) E ′ � C , with (y := step T1)B ′ = B and (y := step T1)E ′ = E .

Since substituting for an unbound local variable does not affect the

order of an expression, we can again apply the induction hypothesis.

• step T1 = λx .B and y E ′ � C , with (y := step T1)E ′ = E . Thus,

(step T0) (step T1) = (λy .C) (λx .B). Since λx .B is of order n, λy .C is

of order n + 1. By (1) of Lemma 3.2 either T0 is a λ-abstraction of

order n + 1 whence (T0 T1) is the required β-redex, or T0 contains the

required β-redex.

68

CHAPTER 3. 3.2. ALGORITHM

3.1.1 Example : fast reverse

Recall the fast reverse example from Section 1.2. To verify the second side

condition of the promotion rule, we had to match

P = λx xs .(⊗) x ((++) (reverse xs))

against

T = λx xs ys .(++) (reverse xs) (x : ys)

giving the substitution

φ = { (⊗) := λa b ys .b (a : ys) }

Firstly, it should be noted that since the parameter b is itself a function,

this is a third-order match and thus Huet and Lang’s algorithm would be

inadequate. Secondly,

φP = λx xs .(λa b ys .b (a : ys)) x ((++) (reverse xs))

Furthermore, step (φP) = T and so the one-step algorithm does find the

appropriate match.

3.2 Algorithm

The following is the definition of appresolve once:

appresolve once F E T = [[[[(F → T0), (E → T1)]] | (T0 T1) = T]]

+ [[[[(F → T0), (E → T1)]] | (T0,T1)← apps T]]

+ [[[[F → (λx .T)]] | x fresh]]

This definition allows any expression as the term T , and tries to write it as

an application, so that the parts of the application can be matched against

the pattern’s function F and argument E respectively. There are three dif-

ferent ways appresolve once tries to do this. Firstly, T might already be an

application (T0 T1), in which case we match F against T0 and E against T1.

69

CHAPTER 3. 3.2. ALGORITHM

Alternatively, there might be some pair of expressions (T0,T1) such that

(T0 T1) is a β-redex which reduces to T . This can be formalized in the fol-

lowing specification of the function apps ; apps T is the function that returns

all pairs of normal expressions (T0,T1) such that

∃B : (T0 = λx .B

∧ (x := T1)B = T

∧ x occurs in B , x fresh)

For example, a correct implementation of apps would return

apps (a + a) = [[(λx .x + x , a),

(λx .x + a, a),

(λx .x , a + a),

(λx .x a, (+) a),

(λx .x a a, (+))]]

Note that the pair (λx .a + x , a) is not in the set of results. This is because

λx .a + x is not η-normal. However, recall that if the expression T can be

directly expressed as an application (T0 T1), then this is treated as a special

case. The expression a+a is the application (a+) a, and (a+) is the η-normal

form of λx .a + x .

Finally, note the requirement in the specification of apps that x should

occur in B . The reason for this is that if x did not occur in B , any expression

would be a valid choice for T1 and so apps would give an infinite set of results.

We therefore deal with this case separately; if x does not occur in B then

B = T and so T0 = λx .T , thus we simply match F against λx .T and do not

match E against anything, which indicates that it can take on any value.

In Figure 3.1, we give a matching tree for the one-step algorithm for the

rule p q → 1 + 1. Reading the results from the tree, we find the following

70

CHAPTER 3. 3.2. ALGORITHM

-
PPPPPP

-
-

PPPPPP
-
-

PPPPPP
-
-

PPPPPP
-
-

PPPPPP
-
-

PPPPPP
-
-

PPPPPP
-

PPPP
-

PPPP
-

PPPP
-

PPPP
-

PPPP
-

PPPP
-

PPPP

PPPP

PPPP

PPPP

PPPP

PPPP

PPPP

p q 1 + 1

p (+) 1
q 1

p λx .x + x
q 1

p λx .x + 1
q 1

p λx .x
q 1 + 1

p λx .x 1
q (+) 1

p λx .x 1 1
q (+)

p λx .1 + 1

p := (+) 1

q 1

p := λx .x + x

q 1

p := λx .x + 1

q 1

p := λx .x

q 1 + 1

p := λx .x 1

q (+) 1

p := λx .x 1 1

q (+)

p := λx .1 + 1

q := 1

q := 1

q := 1

q := 1 + 1

q := (+) 1

q := (+)

Figure 3.1: A one-step matching tree for p q → 1 + 1

71

CHAPTER 3. 3.2. ALGORITHM

matches:

(p := (+) 1, q := 1)

(p := λx .x + x , q := 1)

(p := λx .x + 1, q := 1)

(p := λx .x , q := 1 + 1)

(p := λx .x 1, q := (+) 1)

(p := λx .x 1 1, q := (+))

(p := λx .1 + 1)

3.2.1 Defining apps

The implementation of apps is relatively simple. The specification tells us

that T0 is a λ-abstraction λx .B where x appears in B . Therefore, since

(x := T1)B = T , any value we choose for T1 must be subexpression of T .

Therefore, apps T first finds all subexpressions of T and sets T1 to be each

subexpression in turn; T0 will be the expression λx .B . We construct B by

taking T and selectively replacing occurrences of T1 in T with the bound

variable x . Care must be taken to ensure that at least one occurrence of T1

is replaced, or B will not contain x .

We must also take care to avoid problems of variable capture. The speci-

fication of apps states that T1 will be substituted for x in B , and therefore T1

should not contain any unbound local variables whose binding λ occurs in B .

This would happen if a subexpression was chosen that contained unbound

72

CHAPTER 3. 3.2. ALGORITHM

local variables that were not also unbound in T .

apps T = [[(λx .B , S) | (S , locs)← collect (subexps T),

unboundlocals S ⊆ unboundlocals T ,

locs ′ ⊆ locs ,

locs ′ 6= { },
B = replaces T locs ′ x ,

λx .B normal,

x fresh]]

The subexps function returns all subexpressions of a given expression:

subexps v = [[(v , 〈〉)]]

subexps c = [[(c, 〈〉)]]

subexps (λx .E) = [[((λx .E), 〈〉)]]

+ [[(S ,Body ; loc) | (S , loc) ∈ subexps E]]

subexps (E1 E2) = [[(E1 E2, 〈〉)]]

+ [[(S ,Func; loc) | (S , loc) ∈ subexps E1]]

+ [[(S ,Arg ; loc) | (S , loc) ∈ subexps E2]]

The collect function gathers together all subexpressions that have equal

terms; this allows apps to identify common subexpressions. Its implementa-

tion is straightforward but somewhat intricate, so we define it here by the

following specification:

∃locs : ((S , locs) ∈ collect Ss ∧ loc ∈ locs) ≡ (S , loc) ∈ Ss
locs1 6= locs2

∧ (S1, locs1) ∈ collect Ss

∧ (S2, locs2) ∈ collect Ss

 ⇒ S1 6= S2

For example, we have that:

collect [[(0, 〈Func,Arg〉), (0, 〈Arg ,Func,Arg〉), (1, 〈Arg ,Arg〉)]]

=

[[(0, [[〈Func,Arg〉, 〈Arg ,Func,Arg〉]]), (1, [[〈Arg ,Arg〉]])]]

73

CHAPTER 3. 3.3. PROOF OF CORRECTNESS

Calling replace loc S E replaces the subexpression at position loc in E with

S :

replace 〈〉 S E = S

replace (Body ; loc) S (λx .E) = λx .(replace loc S E)

replace (Func; loc) S (E1 E2) = (replace loc S E1) E2

replace (Arg ; loc) S (E1,E2) = E1 (replace loc S E2)

The replaces function iterates the application of replace over a set of loca-

tions:

replaces T [[]] S = T

replaces T ([[loc]] + locs) S = replace loc S (replaces T locs S)

3.3 Proof of correctness

To prove the correctness of this algorithm, we need to show that our defini-

tion of appresolve once satisfies the following conditions (repeated from Sec-

tion 2.5.2.8). We first prove this assuming the above specification of apps ,

and then show that the implementation we have given for apps satisfies this

specification.

Suppose that appresolve once F E T = [[Ys1, ...,Ysk]]. Then we require

that:

{1} For all substitutions φ:

etanormalise (once (reduce ′ once (φF)) (reduce ′ once (φE))) = T

≡∨
i φ `once Ysi

{2} For all substitutions φ:

(φ `once Ysi) ∧ (φ `once Ysj) ⇒ i = j .

74

CHAPTER 3. 3.3. PROOF OF CORRECTNESS

{3} The pattern variables in Ysi are contained in the pattern variables of

F E .

{4} For each index i :

Ysi � (F E → T) .

In the same way as we write step for reduce once, we can abbreviate

reduce ′ once with step ′. First, note that if F and E are η-normal, then so is

once F E , since substitution cannot introduce η-redexes. Thus, we have that

etanormalise (once (step ′ F) (step ′ E))

is equal to

once (step ′ F) (step ′ E)

As a result, our proof obligation for condition {1} is as follows:

once (step ′ (φF) (step ′ (φE)) = T

≡

∃Ys ∈ appresolve once F E T : φ `once Ys

Now,

once (step ′ (φF) (step ′ (φE)) = T

≡ {definition of once, let F ′ = step ′ (φF) and E ′ = step ′ (φE)}

(∃B : F ′ = λx .B ∧ (x := E ′)B = T)

∨ (¬(∃B : F ′ = λx .B) ∧ (F ′ E ′ = T))

We continue with the two disjuncts separately.

¬(∃B : F ′ = λx .B) ∧ (F ′ E ′ = T)

≡ {T is normal}

F ′ E ′ = T

≡ {definition of `once}

∃T0,T1 : T0 T1 = T ∧ φ `once [[F → T0,E → T1]]

75

CHAPTER 3. 3.3. PROOF OF CORRECTNESS

For the other disjunct, we argue

∃B : F ′ = λx .B ∧ (x := E ′)B = T

≡ {predicate logic}

∃B0,B1 : F ′ = λx .B0

∧ B1 = E ′

∧ (x := B1)B0 = T

≡ {property of substitution}

(∃B0,B1 : F ′ = λx .B0

∧ B1 = E ′

∧ (x := B1)B0 = T

∧ x occurs in B0

∨ F ′ = λx .T)

≡ {definitions of F ′, E ′, apps and `once}

∃(T0,T1) ∈ apps T : φ `once [[F → T0,E → T1]]

∨ φ `once (F → λx .T)

In the forward implication of the last step, we need to know that B1 and

λx .B0 are normal in order to apply the definition of apps . Normalness of

B1 follows from normalness of T (as B1 is a subexpression of T). Similarly,

normalness of B0 follows from normalness of T . Because B0 is normal, the

abstraction λx .B0 can only fail to be normal by being an η-redex; but F ′ is

not an η-redex (because it results from step ′), and λx .B0 = F ′.

Therefore, we have that

(∃B : F ′ = λx .B ∧ (x := E ′)B = T)

∨ (¬(∃B : F ′ = λx .B) ∧ (F ′ E ′ = T))

≡ {combining the two derivations above}

(∃T0,T1 : (T0 T1) = T ∧ φ `once [[F → T0,E → T1]])

∨ (∃(T0,T1) ∈ apps(T) : φ `once [[F → T0,E → T1]])

∨ (φ `once [[F → λx .T]])

≡ {definition of appresolve}

76

CHAPTER 3. 3.3. PROOF OF CORRECTNESS

∃Ys ∈ appresolve once F E T : φ `once Ys

This completes the proof of soundness and completeness of appresolve none.

The progress condition {4} is clearly satisfied since “F ” and “E” together

have one less symbol than “F E” (recall that the space of function application

is considered a symbol). Condition {3} is obvious from the definition of

appresolve, so it remains to prove condition {2}, that is that

appresolve once F E T = [[Ys0,Ys1, . . . ,Ysk]]

does not contain any redundant elements. We need to prove that

φ `once Ysi ∧ φ `once Ysj ⇒ i = j

This implication follows because each Ysi contains a rule whose left-hand

side is F :

(F → Ei) ∈ Ysi

Now observe that

φ `once Ysi ∧ φ `once Ysj

⇒ {since (F → Ei) ∈ Ysi}

φ `once (F → Ei) ∧ φ `once (F → Ej)

≡ {definition of `once}

Ei = step ′ (φF) = Ej

However, all the Ei are distinct, so i = j . To see that the Ei are distinct,

recall that there are three cases to consider:

(Ei ,Y) ∈ apps T

or Ej = λx .T where x is fresh

or Ek T1 = T

To show that these three cases are mutually exclusive, we argue:

77

CHAPTER 3. 3.3. PROOF OF CORRECTNESS

i 6= j : Note that Ei = λx .Bx for some Bx , with x occurring in Bx . It follows

that Ei = λx .Bx 6= λx .T = Ej .

j 6= k : If Ej = Ek , we have Ej = λx .T = λx .Ek T1 = λx .(Ej T1). An

expression cannot occur inside itself, so this is a contradiction.

i 6= k : If Ei = Ek , then Ei = (λx .Bx) = Ek for some Bx . But this implies

that T = Ek T1 = (λx .Bx) T1 contains a β-redex. That contradicts the

normalness of T .

3.3.1 Correctness of apps

The specification of apps is:

(T0,T1) ∈ apps T ≡ T0,T1 normal

∧ ∃B : (T0 = λx .B

∧ (x := T1)B = T

∧ x occurs in B , x fresh)

Thus, to prove the correctness of our implementation, we need to prove the

following equivalence:
λx .B ,T1 normal

∧ (x := T1)B = T

∧ x occurs in B , x fresh

≡

∃locs , locs ′ :

(T1, locs) ∈ collect (subexps T)

∧ unboundlocals T1 ⊆ unboundlocals T

∧ locs ′ ⊆ locs

∧ locs ′ 6= { }
∧ B = replaces T locs ′ x

∧ λx .B normal

∧ x fresh

The backwards implication is straightforward from the definitions of subexps ,

collect and replaces ; note that the normalness of T guarantees the normalness

78

CHAPTER 3. 3.4. RELATED WORK : SECOND-ORDER MATCHING

of T1. Forwards, the definition of substitution combined with the demand

that x occurs in B ensures that T1 is a subexpression of T . The rest follows by

detailed consideration of the definition of substitution, collect and replaces ,

which is straightforward but rather tedious, and hence we omit it.

3.4 Related work : Second-order matching

The standard higher-order matching algorithm used in program transforma-

tion systems was first described in 1978 by Huet and Lang [47]. It operates

on simply-typed λ-terms, and returns all second order matches (with the

restriction that constants in the term can be of order no higher than three).

The algorithm centres around two procedures, SIMPL and MATCH which

together perform a similar function to resolve. Essentially, the MATCH

procedure deals with the situation where the pattern is an application with

a flexible head or a pattern variable, and the SIMPL procedure deals with

the other cases.

The underlying structure of the language on which it operates is somewhat

different. All expressions are fully η-expanded and β-normal simply-typed

λ-terms; thus substitution cannot introduce β-redexes, but must instead be

defined to automatically apply β-reduction.

Here, we present Huet and Lang’s algorithm in the same style as our own

matching algorithms, with appropriate modifications. We start by defining

the relevant notation and then present the algorithm.

3.4.1 Notation

There is a finite set of ground types, e.g. Int , Char , etc. These types are

defined as having order 1. The function, or derived types are defined as

follows: If α1, α2 . . . αn are either ground or derived types and β is a ground

type, then (α1×α2× . . .×αn → β) is a derived type. Furthermore, its order

is 1 + max{O(αi)}, where O(α) is the order of α.

79

CHAPTER 3. 3.4. RELATED WORK : SECOND-ORDER MATCHING

The set of expressions is made up from atoms, applications and abstrac-

tions. The order of a expression is defined as the order of its type.

Atoms consist of constant symbols which we write a, b and c, pattern

(free) variables which we write p, q and r , and local (bound) variables which

we write x , y and z . As before, we take the slightly questionable step of

using notation to make the distinction between each kind of atom, in the

interests of simplicity.

If F is an atom of type (α1×α2× . . .×αn → β), and T1,T2, . . . ,Tn are

terms of type α1, α2, . . . , αn respectively, then the application denoted by

F (T1,T2, . . . ,Tn) is a expression of type β. The head of F (T1,T2, . . . ,Tn)

is F .

If T is an expression of type β, where β is a ground type, and x1, x2, . . . , xn

are local variables of type α1, α2, . . . , αn respectively, then the abstraction

λx1x2 . . . xn .T is a expression of type (α1 × α2 × . . .× αn → β).

Substitutions are partial functions from pattern variables to expressions;

expressions in the range of substitutions need not be closed. When applying

a substitution to an expression, it is necessary to apply β-reduction to ensure

that the result is also a term.

Rules are denoted P → T as before. Since we are working with typed

terms, the expressions P and T are required to have the same type. Since

neither β- nor η-reduction can be expressed in the term language we are

using, no normalness conditions are imposed on P and T .

3.4.2 Algorithm

We copy the matches function from Section 2.4 to form the basis of our pre-

sentation of Huet and Lang’s algorithm; the only changes are to remove the

80

CHAPTER 3. 3.4. RELATED WORK : SECOND-ORDER MATCHING

parameter app and rename the matches and resolve functions appropriately:

huetmatches :: [[Rule]]→ [[Subst]]

huetmatches [[]] = [[idSubst]]

huetmatches ([[X]] + Xs) = [[(φ ◦ σ) | (σ,Ys) ∈ huetresolve X ,

φ ∈ huetmatches (σ (Xs + Ys))]]

The major differences between Huet and Lang’s algorithm and our own

algorithms become apparent with the definition of the huetresolve function

in Table 3.1. Firstly, in keeping with the structure of the language which

does not allow currying, functions are considered with all their arguments

at once. Secondly, our algorithms only generate assignments for variables in

one particular case, that where the pattern of a rule is a pattern variable. In

contrast, Huet and Lang’s algorithm also generates assignments whilst con-

sidering patterns that are function applications; these assignments in some

senses do part of the work of calculating a value for the head of the pattern,

whereas with our algorithms generated assignments give completed values

for the appropriate pattern variable.

The first clause simply states that we can strip away the enclosing λs from

both the pattern and the term. Note that the clauses are applied modulo

renaming of local variables, and so the fact that the pattern and the term are

type compatible and fully η-expanded means that λ-abstractions will match

up exactly.

The second clause states that two constants match if they are the same

and their arguments match. Type compatibility guarantees that if c = d

then n = m. The third clause says the same thing about local variables;

again, if y = z then n = m.

The fourth clause tells us that if we are matching a pattern variable p of

ground type (which will therefore have no arguments attached) against a term

T , then we can simply generate the obvious substitution for p. However we

can only do this if T does not contain any local variables occurring without

their enclosing λ; otherwise the substitution would move these variables out

of scope.

81

CHAPTER 3. 3.4. RELATED WORK : SECOND-ORDER MATCHING

X huetresolve X

(λx1 . . . xn .P)→ (λx1 . . . xn .T) (idSubst , [[P → T]])

c(T1 . . .Tn)→ d(T ′1 . . .T
′
m) [[(idSubst , [[T1 → T ′1 . . .Tn → T ′n]])]],

if c = d

[[]], otherwise

y(T1 . . .Tn)→ z (T ′1 . . .T
′
m) [[(idSubst , [[T1 → T ′1 . . .Tn → T ′n]])]],

if y = z

[[]], otherwise

p → T [[(p := T , [[]])]],

if T does not contain unbound
local variables

[[]], otherwise

p(T1 . . .Tn)→ z (T ′1 . . .T
′
m) [[(p := λx1 . . . xn .xi ,

p(T1 . . .Tn)→ z (T ′1 . . .T
′
m))

| 1 ≤ i ≤ n;

Ti , z (T ′1 . . .T
′
m) type compatible]]

p(T1 . . .Tn)→ c(T ′1 . . .T
′
m) [[(p := λx1 . . . xn .xi ,

p(T1 . . .Tn)→ c(T ′1 . . .T
′
m))

| 1 ≤ i ≤ n;

Ti , c(T ′1 . . .T
′
m) type compatible]]

+[[((p := imitaten c(T ′1 . . .T
′
m)),

p(T1 . . .Tn)→ c(T ′1 . . .T
′
m))]]

Table 3.1: Definition of huetresolve

82

CHAPTER 3. 3.4. RELATED WORK : SECOND-ORDER MATCHING

The fifth clause states that when matching a second order pattern variable

against a local variable, we generate all the projections, that is the functions

which select one of their arguments, so long as they are type compatible.

Generating just these functions suffices because the procedure is only aiming

to return second-order matches, and anything more complex would lead to a

result whose order was higher than two. Note that the rule is left unchanged;

application by huetmatches of the substitution generated will lead to it later

being broken down by the second clause.

Finally, the sixth clause tells us that when matching a second order pat-

tern variable p against a constant c, we again generate all the type compatible

projections, and in addition we generate an imitation, that is the most gen-

eral match for p that contains c. Again, the rule itself is left unchanged in

each case.

imitaten c(T ′1, . . . ,T
′
m) = λx1 . . . xn .c(S1, . . . , Sm)

The Si values are calculated as follows; suppose that the type of T ′i is:

α1 × . . .× αl → β

Then we make qi be a fresh free variable and define:

Si = λy1 . . . yl .qi(x1, . . . , xn , y1, . . . , yl)

3.4.3 Example

An example matching tree for the problem p(q) → 1 + 1 is shown in Fig-

ure 3.2. In the tree, we have written a + b as +(a, b) to make it clearer

which clause in the definition of huetresolve we are applying. As before, we

always work on the first rule in any rule set. Since expressions in the range

of a substitution need not be closed, we must be careful in which order sub-

stitutions are composed when calculating the results from a matching tree;

substitutions are composed from the top of the tree downwards. For this

83

CHAPTER 3. 3.4. RELATED WORK : SECOND-ORDER MATCHING

-

-

-
-

-
-

-

-

-

-
-

-

-

-

�
����

�������

-

p(q) +(1, 1)

p := λx .+ (r1(x), r2(x))

+(r1(q), r2(q)) +(1, 1)

r1(q) 1
r2(q) 1

r1 := λx .1

1 1
r2(q) 1

r2(q) 1

r2 := λx .1

1 1

p := λx .x

q +(1, 1)

q := +(1, 1)

r1 := λx .x

q 1
r2(q) 1

q := 1

r2(1) 1

r2 := λx .1

1 1

r2 := λx .x

1 1

r2 := λx .x

q 1

q := 1

Figure 3.2: A Huet and Lang matching tree for p(q)→ 1 + 1

84

CHAPTER 3. 3.4. RELATED WORK : SECOND-ORDER MATCHING

problem, we are left with the following results:

(p := λx .x , q := 1 + 1)

(p := λx .x + x , q := 1)

(p := λx .x + 1, q := 1)

(p := λx .1 + x , q := 1)

(p := λx .1 + 1)

Notice that Huet and Lang’s algorithm breaks down a matching problem in

many more stages than the one-step algorithm. It also returns significantly

less results – compare the above list with that given by the one-step algorithm

for the same problem on page 72.

3.4.4 Discussion

From our perspective, Huet and Lang’s algorithm has two major weaknesses.

Firstly, as we have shown, it does not return the matches we require for

transformations such as the fast reverse derivation. Secondly, it is limited

to simply-typed λ-terms, although this can be extended to polymorphically-

typed terms relatively straightforwardly by introducing type variables. This

enhancement and extensions to the other calculi of Barendregt’s λ-cube is

described by Dowek in [30], which also removes the restriction that constants

in the term must be third-order or lower.

Curien, Qian and Shi [23] describe and implement modifications to the

algorithm which they claim speed it up significantly when the pattern con-

tains many free variables or the term contains many bound variables, but

has a worse performance when the term contains many constant symbols.

Their changes “short-circuit” the creation of intermediate variables and in

fact result in an algorithm that is somewhat similar to the one-step algorithm

restricted to second-order variables, in that it also tries to form matches by

abstracting subexpressions from the term being matched against.

We do not have any concrete performance comparisons between the one-

step algorithm and Huet and Lang’s algorithm; it would be difficult to do a

85

CHAPTER 3. 3.4. RELATED WORK : SECOND-ORDER MATCHING

direct comparison because of the larger set of results returned by the one-

step algorithm. However, it should be possible to compare the average time

taken per match returned, for example.

The key difference between the two algorithms that is likely to have a

performance impact can be seen by comparing Figures 3.1 and 3.2, which

show matching trees for the same problem. At each point in the matching

tree where the pattern of the rule being considered is an application, the one-

step algorithm immediately branches the tree in several different ways; if no

subterms of the pattern are applications, then none of these branches will

themselves branch further. In contrast, Huet and Lang’s algorithm creates

a limited number of branches (one for each “projection” and one for the

“imitation”), and the new free variables introduced by this process ensure

that more branching will occur later in the tree. In some cases, we might

find that Huet and Lang’s approach wins because entire branches can be cut

off without fully exploring them; in others the one-step algorithm might save

on the overhead of creating and matching new free variables. It seems likely

that a performance comparison would yield similar results to those seen by

Curien, Qian and Shi.

86

Chapter 4

Two-step matching

Although use of one-step matching allows us to apply many transformations,

particularly those requiring cat-elimination, there are various examples of

transformations for which the one-step algorithm is unable to find the nec-

essary matches. One example of this is the minimum depth example from

Section 1.2. To remedy this deficiency, we present the two-step algorithm,

which returns a larger set of results than the one-step algorithm, but is only

valid if certain extra restrictions on the pattern are satisfied. The set of

results returned includes all third-order matches, but is guaranteed to be

finite as a result of our restrictions. Used in conjunction with the one-step

algorithm when these restrictions are not satisfied, it significantly extends

the range of transformations that we are able to apply. We shall consider

the minimum depth example in detail later on in this chapter as an example

of a transformation that is enabled by this algorithm. This work has been

published in [84].

4.1 Specification

For all rules P → T , the pattern P is restricted as follows. For each subex-

pression F E of P such that F is flexible, i.e. has a pattern variable or

λ-abstraction as its head, E must satisfy the following conditions: Firstly

87

CHAPTER 4. 4.1. SPECIFICATION

Pattern Valid? Reason

p (λx .x + x) Yes Constant + and local variable x
present in body

p (λx .x) No No constant or external local variable
in body

p (λx .0) No Local variable x not in body

p (λx y .x) No Local variable y not in body

λx .p (λy .y x) Yes External local x and local y present

in body of λy .y x

p (λx .x q) No Pattern variable q present in λx .x q

Table 4.1: Examples of applying the two-step matching restrictions to pat-

terns

it must contain no pattern variables. Secondly, suppose E = λx1...xn .B ,

where n is possibly 0, but B does not contain any outermost λs. Then each

of x1...xn must occur at least once in B , and B must contain at least one

constant symbol, or alternatively a local variable that is bound in P outside

F E . So for example, p (λx .x + x) is a valid pattern, but p (λx .x) is not be-

cause λx .x contains no constant or local variable other than x , and neither

is p (λx .0) because the body of λx .0 does not contain the local variable x . A

fuller set of examples is given in Table 4.1.

These restrictions may seem somewhat arbitrary; the motivation for them

is that given a rule whose pattern obeys them, only a finite number of substi-

tutions will be returned by the algorithm for two-step matching that we shall

present – we shall justify this claim later. We have found that they do not

obstruct the application of the program transformations we are interested in;

in the cases where they do not hold, the one-step matching algorithm can

instead be applied successfully. Miller’s higher-order patterns [65], which

we discussed in Section 2.1, restrict the arguments to functions rather more

drastically.

88

CHAPTER 4. 4.1. SPECIFICATION

The two-step algorithm is specified by the app function twice:

twice (λx .B) E = unmark (reduce markedonce ((x := mark E)B))

twice E1 E2 = E1 E2

As with once, a β-redex is reduced. However, this is then taken a stage

further. Before the expression E is substituted into the body of B , all the

outer λs are marked with the function mark , turning them into λ′s:

mark c = c

mark x = x

mark p = p

mark (λx .E) = λ′x .(mark E)

mark (E1 E2) = E1 E2

The result of this is that new β-redexes that were introduced by the reduction

of (λx .B) E have their λs marked. As a result, we can easily reduce precisely

those redexes one more time. The function markedonce is just like once but

only operates on redexes with marked λs:

markedonce (λ′x .B) E = (x := E)B

markedonce E1 E2 = E1 E2

Finally, some marks might have been left if a λ-abstraction was substituted

into a position where it was not applied to an argument. A simple recursive

traversal eliminates the marks:

unmark c = c

unmark x = x

unmark p = p

unmark (λx .E) = λx .(unmark E)

unmark (λ′x .E) = λx .(unmark E)

unmark (E1 E2) = (unmark E1) (unmark E2)

89

CHAPTER 4. 4.1. SPECIFICATION

We write twostep = reduce twice and markedstep = reduce markedonce. In-

tuitively, twostep is a parallel reduction step in the same way as step; however

the difference is that β-redexes are reduced twice, in that any redexes directly

created by the reduction of the original redex are themselves reduced.

To illustrate, consider

twostep ((λx .x 1) (λy .y + y)) = 1 + 1

If we used step as defined in the previous chapter, we would have

step ((λx .x 1) (λy .y + y)) = (λy .y + y) 1

It should be noted that although very similar, twostep E is not always

the same as step (step E), as the following (rather contrived) example shows:

Define the expression E by

E = (λf .f 1) (λx g .x + g 2) (λy .y + 3)

Then we have that

step E = (λx g .x + g 2) 1 (λy .y + 3)

and so it follows that

step (step E) = 1 + (λy .y + 3) 2

In contrast, applying twostep gives

twostep E = 1 + (2 + 3)

This example shows that there are some expressions where twostep re-

duces more β-redexes than applying step twice. However, there are also

cases where the converse is true – consider the following:

E = (λf .f (λx .x + 1) 2) (λy .y)

We have that

step E = (λy .y) (λx .x + 1) 2

90

CHAPTER 4. 4.1. SPECIFICATION

and so applying step once more gives us

step (step E) = 2 + 1

In contrast,

twostep E = (λx .x + 1) 2

We previously showed that if using simple typing, then for rules with

β-normal patterns, simple matching gives all first-order general matches and

one-step matching all second-order general matches. In a similar vein, we now

show that two-step matching produces all third-order general matches. Al-

though third-order matching can in general produce an infinite set of matches,

this is not the case for patterns that satisfy the restrictions we have outlined.

Before we give this proof, we note that two-step matching also produces

some fourth-order matches. Consider for example the following rule:

p (λx g .x + g 2) (λy .y + 3)→ 1 + (2 + 3)

The match (p := λf .f 1) is a fourth-order general match for this rule, since

(λx g .x + g 2) is a third-order function. As we showed earlier, we have that

twostep ((λf .f 1) (λx g .x + g 2) (λy .y + 3)) = 1 + (2 + 3)

Thus, this match is also a two-step match.

Returning to our claim that two-step matching produces all third-order

general matches, our proof proceeds by contradiction, along similar lines to

that in Section 3.1. Suppose φ is a third-order general match for a rule

P → T , with P β-normal, and further suppose that φ does not satisfy the

two-step matching specification twostep (φP) ' T . Then twostep (φP) must

contain a β-redex, and applying Lemma 4.2 below tells us that φP must

contain a β-redex whose left-hand side is of order 4 or higher, which must

have been introduced by φ, since P is β-normal. Thus φ is not a third-order

match as we had supposed.

Before proving Lemma 4.2, we need to prove the following lemma about

markedstep:

91

CHAPTER 4. 4.1. SPECIFICATION

Lemma 4.1. If markedstep T contains a β-redex (λx .B) E, where λx .B is

an expression of order n, then either T contains a β-redex (λ′y .C) F , where

λ′y .C is an expression of order n +1 or higher, or a β-redex (λx .B ′) E ′ where

λx .B ′ is of order n or higher.

Proof. By induction on the size of T . Suppose that the result is true for all

expressions smaller than T . By Lemma 2.2, there exists (T0 T1) � T such

that:

(λx .B) E � markedonce (markedstep T0) (markedstep T1)

If markedstep T0 is not a λ′-abstraction, then:

markedonce (markedstep T0) (markedstep T1)

=

(markedstep T0) (markedstep T1)

If markedstep T0 = λx .B we apply part (1) of Lemma 3.2 to show that either

T0 contains the required β-redex or that (T0 T1) is the required β-redex.

Otherwise, either (λx .B) E � step T0 or (λx .B) E � step T1, and we apply

the induction hypothesis.

If markedstep T0 = λ′y .C , then:

markedonce (markedstep T0) (markedstep T1)

=

(y := markedstep T1) C

Either:

• (λx .B) E � markedstep T1 (and y occurs in C)

The result follows from the induction hypothesis.

• (λx .B ′) E ′ � C

Then (y := markedstep T1)B ′ = B and (y := markedstep T1)E ′ =

E . Since substituting for an unbound local variable does not affect

92

CHAPTER 4. 4.1. SPECIFICATION

the order of an expression, the result again follows from the induction

hypothesis.

• markedstep T1 = λx .B and y E ′ � C

Then (y := markedstep T1)E ′ = E . We have that:

(markedstep T0) (markedstep T1) = (λ′y .C) (λx .B)

Since λx .B is of order n, λ′y .C is of order n + 1. By (1) of Lemma 3.2

either T0 is a λ-abstraction of order n+1 whence (T0 T1) is the required

β-redex, or T0 contains the required β-redex.

Lemma 4.2. If twostep T contains a β-redex (λx .B) E, where λx .B is an

expression of order n, then T contains a β-redex whose left-hand side is an

expression of order n + 2 or higher.

Proof. By induction on the size of T . Assume that the result holds for all

expressions smaller than T . By Lemma 2.2,

∃(T0 T1) � T : (λx .B) E � twice (twostep T0) (twostep T1)

If twostep T0 is not a λ-abstraction, then

twice (twostep T0) (twostep T1) = (twostep T0) (twostep T1)

Then either (λx .B) E � twostep T0 or (λx .B) E � twostep T1, and we apply

the induction hypothesis.

Otherwise, twostep T0 = λy .C . Let C ′ = (y := mark (twostep T1))C ,

then

twice (twostep T0) (twostep T1) = unmark (markedstepC ′)

By Lemma 4.1, there is a redex R such that R � C ′ and either R =

(λx .B) E or R = (λ′z .D) G , for some z ,D ,G where λ′z .D is of order n + 1

or higher.

Either:

93

CHAPTER 4. 4.1. SPECIFICATION

• R�twostep T1 (and y occurs in A). We apply the induction hypothesis.

• R′ � C , with (y := twostep T1)R′ = R. Since substituting for an

unbound local variable does not affect the order of an expression, we

can again use the induction hypothesis.

• mark(twostep T1) is the λ-abstraction part of R. In this case R is

(λ′z .D) G (since mark will not leave an outermost λ unmarked), and

there exists G ′ such that z G ′ � C and (y := mark (twostep T1))G ′ =

G . Therefore, mark (twostep T1) is of order n + 1 or higher, and so

λy .C = twostep T0 is of order n + 2 or higher. By (2) of Lemma 3.2

either T0 is a λ-abstraction of order n+2 whence (T0 T1) is the required

β-redex, or T0 contains the required β-redex.

4.1.1 Example : mindepth

Applying promotion to the mindepth example from Section 1.2 leads to the

following matching problem whilst verifying the second side-condition of the

binary tree promotion law (see Section 6.1 for details on how this problem is

obtained).

λt1 t2.f (λd1.min (mindepth t1 + d1)) (λd2.min (mindepth t2 + d2))

→
λt1 t2 d m. if 1 + d ≥ m

then m

else min (mindepth t1 + (1 + d))

(min (mindepth t2 + (1 + d)) m)

The only substitution that solves this problem is the following:

f := λg h d m. if 1 + d ≥ m

then m

else g (1 + d) (h (1 + d) m)

94

CHAPTER 4. 4.2. ALGORITHM

If we apply this substitution to the pattern of the rule above and apply step,

we find that we obtain the expression

λt1 t2 d m. if 1 + d ≥ m

then m

else (λd1.min (mindepth t1 + d1)) (1 + d)

(λd2.min (mindepth t2 + d2) (1 + d) m)

In other words, the one-step algorithm is not able to solve this problem. In

contrast, the extra reduction carried out by markedstep means that if we

apply twostep instead we obtain the term of the rule, as required; thus the

two-step algorithm is adequate for applying promotion to mindepth.

4.2 Algorithm

The two-step algorithm is implemented as follows:

appresolve twice F E T = [[[[F → etaRed(λx .B)]] |

x fresh,B ← abstracts x E T]]

if F flexible

appresolve twice F E (T1 T2) = [[[[F → T1,E → T2]]]]

if F not flexible

appresolve twice F E T = [[]]

As with appresolve once, this definition takes the term and tries to write

it as an application, and then matches F and E against the function and

argument parts of the application respectively. Either the term is already an

application, or we can turn it into one by constructing a β-redex that reduces

to it. If F is not flexible, it will not match against a λ-abstraction, so there

is no point in trying to construct a β-redex; if the term is also an application

we simply match up the functions and arguments respectively, and if not we

do nothing.

95

CHAPTER 4. 4.2. ALGORITHM

If F is flexible, then E will not have any pattern variables, because we

imposed that as a restriction, and thus any β-redex we construct to match

against has E as the argument part. For the function part, we construct a

new λ-abstraction, using abstracts to give possible values for the body of the

abstraction. The abstracts function plays a somewhat similar role to that

of apps in the one-step algorithm; however in this case we do not separate

the case where the term T is already an application from other cases. As a

result, if T is the application T0 E , then one body returned by abstracts will

be the expression T0 x , and thus λx .B would be an η-redex. It is for this

reason that top-level η-redexes are reduced by use of etaRed .

As before, we shall first give a specification for abstracts and later define

it. The result of abstracts x E T should contain all η-normal expressions B

such that

unmark (markedstep ((x := mark E) B)) ' T

In words, abstracts x E T is specified to give exactly those expressions that

will be reduced to T by markedstep when x is replaced by mark E . Since

markedstep reduces marked β-redexes, and the only marks will be those on

the outer λs of E , this is equivalent to saying that abstracts x E T returns

all the expressions that give T when each occurrence of x is replaced by E

and a β-reduction pass is then performed over the new occurrences of E and

all their arguments.

For example, if T is 1 + (0 + 0) and E is λy .y + y , then a correct imple-

mentation of abstracts would give:

abstracts x (λy .y + y) (1 + (0 + 0)) = [[1 + (0 + 0), 1 + x 0]]

Figure 4.1 shows a two-step matching tree for the rule p (λy .y + y) →
1 + (0 + 0). In general, two-step matching trees exhibit much less branching

than one-step matching trees (such as that in Figure 3.1) because of our

restrictions on the pattern.

96

CHAPTER 4. 4.2. ALGORITHM

-
���������

-

PPPPPPPPP
-

p (λy.y + y) 1 + (0 + 0)

p λx .1 + (0 + 0)

p := λx .1 + (0 + 0)

p λx .1 + x 0

p := λx .1 + x 0

Figure 4.1: A two-step matching tree for p (λy .y + y)→ 1 + (0 + 0)

4.2.1 Defining abstracts

As we remarked above, abstracts x E T should contain all expressions that

will give T when x applied to a set of arguments is replaced by the result

of β-reducing E applied to the same arguments. For example, applying this

procedure to the expression x 1 where E = λy .y + y would give 1 + 1.

Clearly, one candidate for such an expression is T itself. However, we

can also replace any subexpression of T that can be obtained by the above

procedure with an appropriate application of x to a set of arguments. For

example, in the above situation any occurrence of 1+1 in T could be replaced

with x 1. We call such a subexpression an instance of E in T ; the procedure

of replacing an instance with the variable x applied to an appropriate set of

arguments is known as abstracting instances.

This procedure is somewhat complicated by the fact that instances may

overlap; for example consider T = (1 + 1) + (1 + 1) and E = λy .y + y ; then

both the entire term T and the two occurrences of (1 + 1) are instances of

E in T . It is for this reason that our algorithm searches for instances by an

iterative process, which we shall now describe.

The results of the functions abstractsn x E T are specified as being all

the results of abstracts x E T which have had precisely n instances of E

abstracted from T . As we shall see shortly, abstractsn can be implemented by

a recursive procedure, and thus the results of abstracts can be found by taking

the union of all the results of the individual abstractsn functions. Because

the recursive procedure for generating the results of abstractsn will inevitably

97

CHAPTER 4. 4.2. ALGORITHM

result in duplicates, we choose to depart from the policy of using bags we

decided on in Section 2.4 and give our algorithms in terms of sets. Thus,

any practical implementation will have to be careful to explicitly remove

duplicate elements from the results generated.

We define abstracts as follows:

abstracts x E T = ∪{ abstractsn x E T | n = 0 . . . }

At first sight, this definition would appear to be non-terminating, since n

could be any natural number. However, recall the conditions that our re-

strictions on the pattern impose on E ; each formal parameter of E must

appear at least once in E ’s body, and E must contain at least one constant

symbol or local variable whose binding λ in the pattern occurs outside E . As

a result, each instance of E in T will contain at least one more occurrence

of this symbol than the expression involving x that it is replaced with, since

any occurrence of this symbol in the arguments to x would also appear in

the expression that resulted when these arguments were substituted into the

body of E , together with the original occurrence in the body of E .

Thus, if m is the number of occurrences of this symbol in T , then for all

n > m, the set abstractsn x E T is empty. As a result, although the definition

appears to be infinite, it is easy to implement in a terminating manner.

Defining abstractsn itself is relatively straightforward. Abstracting 0 in-

stances of E from T can only give T itself. To abstract n + 1 instances,

we first abstract n instances and then look for ways in which one more can

be abstracted. To facilitate the proof of correctness we shall give later, we

use a different variable y when abstracting this new instance, and then re-

name it to x ; a practical implementation could omit this step and just use x

throughout.

abstracts0 x E T = {T }

abstracts(n+1) x E T = { (y := x)C | B ∈ abstractsn x E T ,

C ∈ abstract x y E B ,

y fresh }

98

CHAPTER 4. 4.2. ALGORITHM

The function abstract is responsible for abstracting precisely one instance of

E . For each subexpression S of T , it calls instance to establish whether S

is an instance of E , and if so it replaces S with an appropriate expression,

which is returned by instance in the event of success.

It is here that the complication raised by overlapping instances shows

itself; we wish to keep track of the number of instances abstracted by counting

the occurrences of x in the result, but consider the following call to abstracts2:

abstracts2 x (λz .z + z) ((1 + 1) + (1 + 1))

One of its members is the expression x 1 + x 1, and abstracting one further

instance of λz .z +z from it gives us x (x 1), which also has two occurrences of

x . Therefore, we make the stipulation that instances should be abstracted in

an outermost order, and enforce this by stipulating that x should not occur

in any subexpression S that is a candidate for abstraction. Thus, in the

above example, the above sequence would be ruled out and we would have

the following sequence of abstractions to obtain x (x 1):

(1 + 1) + (1 + 1)→ x (1 + 1)→ x (x 1)

A second complication also raises its head here. Suppose that E is the

function λw z .z +w and that T contains the subexpression λv .v +1. Then v +

1 is an instance of E which can be replaced by y 1 v , which will lead to a result

containing the subexpression λv .y 1 v . This is not η-normal, which violates

our specification of abstracts . Therefore, after an instance is abstracted, we

call etanormalise on the result.

abstract x y E T = { etanormalise (replace loc R T)

| (S , loc) ∈ subexps T

x /� S

R ∈ instance y E S }

Finally, it remains to define instance. Suppose that E is an expression of

the form λx1 . . . xm .B , where B does not contain any outer λs. Then, the

99

CHAPTER 4. 4.2. ALGORITHM

expression S is an instance of E precisely if there are some E1 . . .Em such

that:

S = (x1 := E1, . . . xm := Em)B

We can ascertain whether this is the case or not by using the simple matching

algorithm from Section 2.6. Recall that our conditions on E mean that B

cannot contain any pattern variables and must contain at least one occurrence

of each of the xis, thus if we treat x1 . . . xm as pattern variables the simple

matching algorithm will return a substitution φ whose domain is precisely

these variables, such that each Ei from above is given by φxi . We can then

replace S by y E1 . . .Em .

instance y E S = { y (φ x1) ... (φ xm)

| (x1, . . . , xm) = params E

φ ∈ matches none [[body E → S]] }

The functions params and body express E as λx1 . . . xm .B as above and return

(x1, . . . , xm) and B respectively, and are easy to define. Note that any local

variables that occur in body E or T without their binding lambdas should

be treated as constants during the application of simple matching; since the

substitution φ is applied immediately, any occurrences of such local variables

in the range of φ will not cause a variable capture problem.

We now give a simple example of applying abstracts . We take T to be

1 + ((0 + 0) + (0 + 0)) and E to be λz .z + z .

The definition of abstracts0 gives us:

abstracts0 x E T = { 1 + ((0 + 0) + (0 + 0)) }

In order to compute abstracts(n+1) x E T , we choose a fresh y and evaluate

abstract x y E B for each B in abstracts0 x E T . The only value for B for

n = 0 is T itself; the first step is to select all subexpressions S of T which

do not contain x , and calculate instance y E S for each.

To evaluate instance for each subexpression, we will need to split up

E into the list of formal parameters (z) and the body z + z . With this

100

CHAPTER 4. 4.2. ALGORITHM

done, we can see that instance y E S will only give results if there are simple

matches between z + z and S , treating z as a pattern variable. Thus, the

subexpressions that will produce results from instance are 0 + 0 (twice) and

(0 + 0) + (0 + 0). In the first case, the result will be { y 0 } and in the second

it will be { y (0 + 0) }.
So, using these results to calculate abstract x y E T , we have the set

{ 1 + y (0 + 0), 1 + (y 0 + (0 + 0)), 1 + ((0 + 0) + y 0) }

Renaming the variable y to x gives us the value of abstracts1 x E T :

{ 1 + x (0 + 0), 1 + (x 0 + (0 + 0)), 1 + ((0 + 0) + x 0) }

We now repeat the process for each element of this new set, obtaining the

following set for abstracts2 x E T :

{ 1 + x (x 0), 1 + (x 0 + x 0) }

Notice that the second element of this set is obtained starting from both the

second and third elements of abstracts1 x E T .

Attempting to iterate one more time, we find that abstracts3 x E T is

empty. Although the subexpression (x 0 + x 0) of the second element of

the above set would produce a result if passed to instance, it violates the

condition that x should not occur in such subexpressions.

Thus, there is no need to calculate abstractsn x E T for n ≥ 4. Combining

the above results gives us:

abstracts x E T = { 1 + ((0 + 0) + (0 + 0)),

1 + x (0 + 0),

1 + (x 0 + (0 + 0)),

1 + ((0 + 0) + x 0),

1 + (x (x 0)),

1 + (x 0 + x 0) }

101

CHAPTER 4. 4.3. PROOF OF CORRECTNESS

4.3 Proof of correctness

We now move onto proving that the above algorithm satisfies the specification

we have given. The details are rather technical, and readers who are only

interested in using our algorithm may wish to skip to Section 4.4.

We refer to the conditions on appresolve from page 59. Once again,

conditions {3} and {4}, which respectively restrict the set of variables in the

newly generated rules and require that we make progress, are easily satisfied.

For the non-redundancy condition {2}, suppose that:

appresolve twice F E T = [[Ys1, . . . ,Ysk]]

If F is not flexible then k = 1 and the condition is trivially satisfied. Oth-

erwise, suppose there exists φ such that φ `twice Ysi and φ `twice Ysj . Then

there exist Bi ,Bj ∈ abstracts x E T such that

etaRed (λx .Bi) = twostep ′ (φF) = etaRed (λx .Bj)

If Bi is of the form Ci x with x not free in Ci , then etaRed (λx .Bi) = Ci ,

and otherwise etaRed (λx .Bi) = λx .Bi . The same is true of Bj , so if they are

either both of this form or both not of this form then Bi = Bj and thus i = j

since abstracts x E T is a set. Otherwise, assume without loss of generality

that Bi is of this form and Bj is not. Then Ci = λx .Bj , and so Bi contains

a β-redex. From the specification of abstracts ,

unmark (markedstep ((x := mark E)Bi)) ' T

Since only β-redexes with marked λs are reduced by markedstep, and marked

λs are only introduced by mark , T contains a β-redex, which violates the

condition that T is normal.

We are now left with the soundness and completeness condition {1}.
Unfortunately, this proof is rather involved, due to the complexity of the

definition of abstracts . We have broken it down into what we hope are

reasonably self-contained parts, each proving intuitively believable results.

We start by making use of reduce ′ from Section 2.5.2.1 to simplify the

proof obligations. Recall that reduce ′ mirrored the definition of reduce, but

102

CHAPTER 4. 4.3. PROOF OF CORRECTNESS

removed η-redexes at any point where they might otherwise have been gener-

ated. Define markedstep ′ = reduce ′markedonce and twostep ′ = reduce ′ twice,

and twice ′ by:

twice ′ (λx .B) E = unmark (markedstep ′ ((x := mark E)B))

twice ′ E1 E2 = E1 E2

Then, since for all F , markedstep ′ F = etanormalise (markedstep F),

etanormalise (twice (reduce ′ twice (φF)) (reduce ′ twice (φE)))

=

twice ′ (twostep ′ (φF) (φE))

Thus, our proof obligation is reduced to showing the following for all substi-

tutions φ:

twice ′ (twostep ′ (φF)) (twostep ′ (φE)) = T

≡

∃Ys ∈ appresolve twice F E T : φ `twice Ys

Now,

Ys ∈ appresolve twice F E T

≡ {definition of appresolve twice}(
F flexible ∧

∃x fresh,B ∈ abstracts x E T :

Ys = [[F → etaRed(λx .B)]]

)

∨

F not flexible

∧ ∃T0,T1 : T = T0 T1

∧ Ys = [[F → T0,E → T1]]

We can now continue separately for the cases where F is flexible and when

it is not. If F is not flexible, then:

twice ′ (twostep ′ (φF)) (twostep ′ (φE)) = T

≡ {if F is not flexible twostep ′ (φF) is not a λ-abstraction}

(twostep ′ (φF)) (twostep ′ (φE)) = T

103

CHAPTER 4. 4.3. PROOF OF CORRECTNESS

≡ {definition of =}

∃T0,T1 : T = T0 T1 ∧ twostep ′ (φF) = T0 ∧ twostep ′ (φE) = T1

≡ {definition of `twice}

∃T0,T1 : T = T0 T1 ∧ φ `twice [[F → T0,E → T1]]

For the case where F is flexible, we define the abbreviation ms ′ as follows:

ms ′A = unmark (markedstep ′A)

We also define E ′ = mark E . Recall that the specification of abstracts states

that for all B ∈ abstracts x E T ,

unmark (markedstep ((x := mark E)Bi) ' T

Since T is η-normal, we can now write this as:

ms ′ ((x := E ′)B) = T

We now argue as follows:

twice ′ (twostep ′ (φF)) (twostep ′ (φE)) = T

≡ {let F ′ = twostep ′ (φF), conditions on the pattern mean

φE = E , twostep ′ E = E}

twice ′ F ′ E = T

≡ {definition of twice, E ′, ms ′}
case F ′ of

(λx .B) → ms ′ ((x := E ′) B)

→ F ′ E = T

≡ {semantics of case, F ′ η-normal, φF closed ⇒ F ′ closed}∃B .

ms ′ ((x := E ′) B) = T

∧ F ′ = λx .B

∧ F ′ not an η-redex

∨(

F ′ E = T

∧ F ′ not a λ-abstraction

)

104

CHAPTER 4. 4.3. PROOF OF CORRECTNESS

≡ {definition of substitution, ms ′, T closed and normal}

∃B .

ms ′ ((x := E ′) B) = T

∧ F ′ = λx .B

∧ F ′ not an η-redex

∨

ms ′ ((x := E ′) B) = T

∧ B = F ′ x

∧ x /� F ′

≡ {definition of etaRed , F ′ η-normal}

∃B .(ms ′ ((x := E ′) B) = T ∧ F ′ = etaRed (λx .B) ∧ B η-normal)

≡ {specification of abstracts}

∃B ∈ abstracts x E T : F ′ = etaRed (λx .B)

≡ {definition of F ′,`twice}

∃B ∈ abstracts x E T : φ `twice F → etaRed (λx .B)

4.3.1 Correctness of abstracts

To show this, we prove by induction that abstractsn satisfies the following

specification. The specification of abstracts then follows immediately, since

abstracts is defined as the union of the abstractsn over all n. The notation

#x (B) gives the number of occurrences of x in B .

B ∈ abstractsn x E T ≡

#x (B) = n

ms ′ ((x := E ′) B)) = T

B η-normal

For the base case n = 0, then B = T and this specification is trivially

satisfied. For the step case, we suppose that it is valid for some n.

We start by making some definitions: denote the number of parameters

that E takes by m. We will wish to make assertions about the first m

arguments of occurrences of certain variables in an expression, and thus for a

variable z and expression A define argsm z A to be set containing the first m

105

CHAPTER 4. 4.3. PROOF OF CORRECTNESS

arguments of each occurrence of z in A. We lift the “is a subexpression of”

operator � to having sets as the right-hand argument in the obvious way,

and thus x /�argsm z A will denote the logical statement that could be written

in English as “x does not occur in the first m arguments of any occurrence

of z in A”.

In the course of the calculation below, we shall need to make use of

the fact that abstract abstracts one further instance of E , and whilst doing

so preserves η-normalness. The proof of this claim is deferred to the next

section.

We are now in a position to argue as follows:

B ∈ abstracts(n+1) x E T

≡ {definition of abstracts(n+1)}

∃C ,D , y fresh.

C ∈ abstractsn x E T

∧ D ∈ abstract x y E C

∧ B = (y := x)D

≡ {induction hypothesis}

∃C ,D , y fresh.

#x (C) = n

∧ ms ′ ((x := E ′) C) = T

∧ C η-normal

∧ D ∈ abstract x y E C

∧ B = (y := x)D

≡ {claim, see Section 4.3.1.1}

∃C ,D , y fresh.

#x (D) = n,#y(D) = 1

∧ ms ′ ((x := E ′) C) = T

∧ ms ′ ((y := E ′) D) = C

∧ D η-normal

∧ x /� argsm y D

∧ B = (y := x)D

106

CHAPTER 4. 4.3. PROOF OF CORRECTNESS

≡ {value of C}

∃D , y fresh.

#x (D) = n,#y(D) = 1

∧ ms ′ ((x := E ′) (ms ′ ((y := E ′) D))) = T

∧ D η-normal

∧ x /� argsm y D

∧ B = (y := x) D

≡ {the redexes reduced by each application of ms ′ are disjoint,

so the applications can be merged}

∃D , y fresh.

#x (D) = n,#y(D) = 1

∧ ms ′ ((x := E ′)((y := E ′) D)) = T

∧ D η-normal

∧ x /� argsm y D

∧ B = (y := x) D

≡ {reordering substitutions}

∃D , y fresh.

#x (D) = n,#y(D) = 1

∧ ms ′ ((x := E ′)((y := x) D)) = T

∧ D η-normal

∧ x /� argsm y D

∧ B = (y := x) D

≡ {backwards, choose D by replacing an outermost

occurrence of x in B with y}

#x (B) = n + 1

∧ ms ′ ((x := E ′) B) = T

∧ B η-normal

107

CHAPTER 4. 4.3. PROOF OF CORRECTNESS

4.3.1.1 Claim about abstract

The following claim about abstract encodes the fact that it abstracts precisely

one instance of E , and preserves η-normalness.
#x (D) = n,#y(D) = 1

ms ′ ((y := E ′) D) = C

x /� argsm y D

D η-normal

 ≡

#x (C) = n

D ∈ abstract x y E C

C η-normal

In order to understand this claim more intuitively, recall E is an expression

that occurs as the argument in an application whose function part has a

flexible head. Thus, E satisfies restrictions on what its body should and

should not contain, as given in Section 4.1. The reader is also reminded that

we use E ′ as a shorthand for mark E , that is E with all outer λs marked.

We first aim to eliminate the η-normalness conditions from our proof

obligation. Recall the definition of abstract :

abstract x y E T = { etanormalise (replace loc R T)

| (S , loc) ∈ subexps T

x /� S

R ∈ instance y E S }

Clearly, the condition that D should be η-normal is trivially satisfied. Simi-

larly, the condition that C should be η-normal follows from the specification

of markedstep ′.

Now, specify the function replace ′ by the following:

replace ′ loc S T = etanormalise (replace loc S T)

As with the definition of reduce ′ from Section 2.5.2.1, we can give a direct

definition of replace ′ that strips off η-redexes as they are created, provided

108

CHAPTER 4. 4.3. PROOF OF CORRECTNESS

that S is η-normal.

replace ′ 〈〉 S E = S

replace ′ (Body ; loc) S (λx .E) = etaRed (λx .(replace ′ loc S E))

replace ′ (Func; loc) S (E1 E2) = (replace ′ loc S E1) E2

replace ′ (Arg ; loc) S (E1,E2) = E1 (replace ′ loc S E2)

Unfolding the definition of abstract gives us the following equivalence:

D ∈ abstract x y E C

≡ {definition of abstract}

∃R, S , loc.

D = etanormalise (replace loc R C)

∧ (S , loc) ∈ subexps C

∧ #x (S) = 0

∧ R ∈ instance y E S

Therefore, since the definition of instance shows that R is η-normal, our

proof obligation has been reduced to:

#x (D) = n

#y(D) = 1

ms ′ ((y := E ′) D) = C

x /� argsm y D

 ≡ ∃R, S , loc.

#x (C) = n

D = replace ′ loc R C

(S , loc) ∈ subexps C

#x (S) = 0

R ∈ instance y E S

We prove this by induction on the structure of D . The induction is over all

D that contain precisely one occurrence of y ; it is valid to restrict the values

of D considered thus because both sides of the proof obligation imply that

this is true. For the left-hand side, this implication is clearly trivial. For the

right-hand side, recall that y is a fresh variable and thus does not occur in

C . The definition of instance implies that R contains one occurrence of y ,

and so the definition of replace ′ tells us that the same is true of D .

Our base case is slightly unorthodox, because of the nature of the results

produced by instance. It considers the situation where D = y A1 . . .Ar , for

0 ≤ r ≤ m.

109

CHAPTER 4. 4.3. PROOF OF CORRECTNESS

There are two step cases. The first sets D = λx .D ′ and assumes that the

result holds for D ′. The second has D = D1 D2 for values of D not already

covered by the base case, and assumes that the result holds for whichever

of D1 or D2 contains the occurrence of y . The proofs of these cases are

relatively straightforward, and we omit them. We shall also omit the details

of the proof of a lemma required for the base case, which simply follows from

unfolding certain definitions.

#x (D) = n,#y(D) = 1

∧ ms ′ ((y := E ′) D) = C

∧ x /� argsm y D

≡ {value of D}

n = 0

∧ ms ′ (E ′A1 . . .Ar) = C

∧ x /� A1 . . .Ar

≡ {definition of ms ′,E ′}

n = 0

∧ λxr+1 . . . xm .((x1 := A1, . . . , xr := Ar) (body E)) = C

∧ (x1, . . . , xm) = params E

∧ x /� A1 . . .Ar

≡ {C is a λ-abstraction with r parameters}

∃S .

n = 0

∧ C = λxr+1 . . . xm .S

∧ S = (x1 := A1, . . . , xr := Ar) (body E)

∧ (x1, . . . , xm) = params E

∧ #x (S) = 0

110

CHAPTER 4. 4.3. PROOF OF CORRECTNESS

≡ {introduce φ with domain { x1, . . . , xr }, each of x1 . . . xr

appears in body E because of restrictions on pattern}

∃S , φ.

n = 0

∧ ∀ 1 ≤ i ≤ r .φxi = Ai

∧ ∀ r + 1 ≤ i ≤ m.φxi = xi

∧ C = λxr+1 . . . xm .S

∧ #x (S) = 0

∧ (x1, . . . , xm) = params E

∧ φ (body E) = S

∧ ∀ψ.ψ (body E) = S , φ ≤ ψ

≡ {definition of =}

∃S , φ.

#x (C) = n

∧ y A1 . . .Ar xr+1 . . . xm = y (φ x1) . . . (φ xm)

∧ C = λxr+1 . . . xm .S

∧ #x (S) = 0

∧ (x1, . . . , xm) = params E

∧ φ (body E) = S

∧ ∀ψ.ψ (body E) = S , φ ≤ ψ

≡ {specification of matches none from Section 2.6}

∃S , φ.

#x (C) = n

∧ y A1 . . .Ar xr+1 . . . xm = y (φ x1) . . . (φ xm)

∧ C = λxr+1 . . . xm .S

∧ #x (S) = 0

∧ (x1, . . . , xn) = params E

∧ φ ∈ matches none (body E) S

111

CHAPTER 4. 4.3. PROOF OF CORRECTNESS

≡ {Lemma 4.3}

∃S , loc, φ.

#x (C) = n

∧ y A1 . . . Ar = replace ′ loc (y (φ x1) . . . (φ xm)) C

∧ (S , loc) ∈ subexps C

∧ #x (S) = 0

∧ (x1, . . . , xn) = params E

∧ φ ∈ matches none (body E) S

≡ {definition of D , introduce R}

∃R, S , loc, φ.

#x (C) = n

∧ D = replace ′ loc R C

∧ (S , loc) ∈ subexps C

∧ #x (S) = 0

∧ R = y (φ x1) . . . (φ xm)

∧ (x1, . . . , xn) = params E

∧ φ ∈ matches none (body E) S

≡ {definition of instance}

∃R, S , loc.

#x (C) = n

∧ D = replace ′ loc R C

∧ (S , loc) ∈ subexps C

∧ #x (S) = 0

∧ R ∈ instance y E S

Lemma 4.3.

y A1 . . .Ar xr+1 . . . xm = y (φ x1) . . . (φ xm)

∧ C = λxr+1 . . . xm .S

≡

y A1 . . .Ar = replace ′ loc (y (φ x1) . . . (φ xm)) C

∧ (S , loc) ∈ subexps C

Proof. By unfolding the specification of replace ′ and the definitions of replace,

', subexps , and taking advantage of the η-normalness of (y A1 . . .Ar) and

C .

112

CHAPTER 4. 4.4. RELATED WORK : THIRD-ORDER MATCHING

4.4 Related work : Third-order matching

In this section we discuss an algorithm by Comon and Jurski [22], which gen-

erates a representation of the set of third-order matches for the simply typed

λ-calculus. The first step is to transform a matching problem into multiple

interpolation equations. Next, each interpolation equation is converted into

a tree automaton which accepts λ-terms if and only if they are solutions of

the corresponding equation. Finally, the results are combined to give a single

automaton which represents the set of solutions for the problem.

4.4.1 Tree automata

The standard definition of tree automata [35, 89] is modified slightly for

the purposes of this algorithm to allow all closed terms of a particular type

to be represented by one state. In this context, a tree automaton consists

of a set F of labels (which are used to construct λ-terms), including the

special variables 2τ1 , . . . ,2τn which are intended to represent any term of

type τ1, . . . , τn respectively, a set Q of states including a subset Qf of final

states, and a set ∆ of transition rules of the form f (q1, . . . , qm) → q for

f ∈ F and q , q1, . . . , qm ∈ Q .

The forgetful relation v is defined as the least reflexive relation on terms

such that:

2τ v u for each term u of type τ .

If u1 v v1, . . . , un v vn then f (u1, . . . , un) v f (v1, . . . , vn) for each f of

appropriate type.

Each transition rule ∆ has a label with some (possibly none) states as pa-

rameters on the left, and a new state on the right. Given a λ-term expressed

as a tree, a rule can be applied to a subterm to produce a new tree in which

one of the leaves is a state. The idea is that if this can be done repeatedly to

some term to produce a final state, then that term, or any term that can be

made from it by replacing 2s with terms of the appropriate type, is accepted

by the automaton.

113

CHAPTER 4. 4.4. RELATED WORK : THIRD-ORDER MATCHING

Formally, the set of transition rules induces a relation →
∆

with reflexive

transitive closure →
∆

∗, and a term t is accepted by an automaton if there

exists a term u (which may contain some 2 symbols) such that u v t and

u →
∆

∗qf for some final state qf .

For example, suppose we have an automaton with labels { x , λx , a,2o },
states { q2, qa , qf } where qf is a final state, and the following transition rules:

a → qa

2o → q2

x (qa , q2) → qa

λx .qa → qf

Then we have the following transition sequence:

λx .x (a,2o)→
∆
λx .x (qa ,2o)→

∆
λx .x (qa , q2)→

∆
λx .qa →

∆
qf

Thus λx .x (a, b) is accepted by the automaton for any b of type o.

Tree automata are closed under union and intersection; that is, given two

automata we can construct a third automaton which accepts exactly those

terms in the union or intersection of the sets of terms accepted by the original

automata.

4.4.1.1 Generating the interpolation equations

An interpolation equation is an equation of the form x (s1, . . . , sn) = t where

x is a free variable and s1, . . . , sn , t are closed and normal.

Comon and Jurski proposed the following procedure to generate a par-

ticular set of interpolation equations from the matching problem s = t .

Start with an empty set of interpolation equations. Let x (s1, . . . , sn) of

type τ be an occurrence of a free variable together with its arguments in s ,

where s1, . . . , sn do not contain any free variables. Let r be either 2τ or

a subterm of t with some (or all or none) of its own subterms replaced by

variables from s1, . . . , sn which are bound higher up in s . In the special case

that x is the last free variable in s , the only option allowed for r is t itself.

114

CHAPTER 4. 4.4. RELATED WORK : THIRD-ORDER MATCHING

Finally, replace x (s1, . . . , sn) with r in s , and if r is not 2τ then add the

equation x (s1, . . . , sn) = r to the set of interpolation equations, and repeat

this procedure until we are left with the equation t = t (which is guaranteed

by the restriction on r for the last free variable in s).

This procedure gives a set of interpolation equations whose conjunction

can be solved to give a set of solutions to the original matching problem.

If we generate all such possible sets of equations, the union of the sets of

solution will give a complete set of third order solutions.

4.4.2 Solving interpolation equations

The interpolation equation x (s1, . . . , sn) = t , where x is of type τ1, . . . , τn →
o is solved by any term accepted by the following automaton:

The labels are the constant symbols occuring in t , the fresh variables

x1, . . . , xn of types τ1, . . . , τn , and the special symbols 2τ for each base type

τ .

The states Q are qu for all subterms u of t , q2τ for all base types τ , and

the final state qf .

The transition rules are:

• g(qt1 , . . . , qtn) → qg(t1,... ,tn) for each qg(t1,... ,tn) in Q – note that this

includes the possibility of n = 0 and thus rules like g → qg and 2τ →
q2τ

• xi(qt1 , . . . , qtn) → qu where u is a subterm of t and si(t1, . . . , tn) has

u as its normal form. For each j , if tj is of type τ and the expression

si(t1, . . . , tj−1,2τ , tj +1, . . . , tn) also has u as its normal form then tj

should be set to 2τ to ensure the rule covers the most general term

possible

• λx1, . . . , xn .qt → qf

115

CHAPTER 4. 4.4. RELATED WORK : THIRD-ORDER MATCHING

4.4.3 Combining results

It remains to combine the resulting automata by union or intersection in

the manner determined when the interpolation equations were generated.

Generating the union of two automata is easy; we simply take the union of

the sets of labels, states, final states and transition rules respectively.

Dealing with intersection is a little bit more tricky. The set of labels is

again obtained by set union; however, the set of states and final states is

obtained by taking cartesian products.

We obtain the set of transition rules by combining compatible rules, (i.e.

those with the same outermost symbol on the left-hand side), from each of the

original sets. So for example x (q11, q12)→ q13 and x (q21, q22)→ q23 combine

to give x ((q11, q21), (q12, q22)) → (q13, q23), and λx .q11 → q12 combines with

λx .q21 → q22 to give λx .(q11, q21) → (q12, q22). Note that s and 2τ are

compatible if s is of type τ , so the rules s → q1 and 2τ → q2 combine to give

s → (q1, q2).

We also add the special rules (qs1 , qs2) → (q2τ1
, qs2) and (qs1 , qs2) →

(qs1 , q2τ2
) where s1 and s2 are of type τ1 and τ2 respectively (these are not

strictly transition rules according to the definition given earlier, but their use

is obvious).

4.4.4 Example

Take the problem x (λz1.x (λz2.z1)) = c(a). For simplicity, we assume that

there is only one base type, o. By the procedure in Section 4.4.1.1, the

problem reduces to these five sets of interpolation equations:

116

CHAPTER 4. 4.4. RELATED WORK : THIRD-ORDER MATCHING

x (λz1.2) = c(a)

x (λz1.a) = c(a) ∧ x (λz2.z1) = a

x (λz1.c(a)) = c(a) ∧ x (λx2.z1) = c(a)

x (λz1.z1) = c(a) ∧ x (λz2.z1) = z1

x (λz1.c(z1)) = c(a) ∧ x (λz2.z1) = c(z1)

Note that z1 cannot appear in the solutions of the second equations of each

set; this is guaranteed by the omission of transition rules with bound variables

on the left-hand side.

We derive the solutions for the fourth set of equations – the procedure for

the others is identical and combining the sets of solutions is a trivial matter

of taking the union of the automata.

The equation x (λz1.z1) = c(a) is solved by the automaton with labels

{x1, c, a,2o}, states {qc(a), qa , q2o , qf }, and the following transition rules:

c(qa) → qc(a)

a → qa

2o → q2o

x1(qa) → qa

x1(qc(a)) → qc(a)

λx1.qc(a) → qf

The second equation x (λz2.z1) = z1 is solved by the automaton with labels

{x1, z1,2o}, states {qz1 , q2o , qf }, and the following transition rules:

2o → q2o

x1(q2o) → qz1

λx1.qz1 → qf

117

CHAPTER 4. 4.4. RELATED WORK : THIRD-ORDER MATCHING

The next step is to calculate the intersection automaton. The set of labels

is {x1, c, a, z1,2o}, and the set of states is {(qc(a), qz1), (qc(a), q2o), . . . }. The

set of transition rules is:

2o → (q2o , q2o)

a → (qa , q2o)

c((qa , q2o)) → (qc(a), q2o)

x1((qa , q2o)) → (qa , qz1)

x1((qc(a), q2o)) → (qc(a), qz1)

λx1.(qc(a), qz1) → (qf , qf)

We also add these special transition rules (others could be added but they are

useless in practice since the states on the left-hand side are never reached).

(qa , qz1) → (qa , q2o)

(qc(a), qz1) → (qc(a), q2o)

The only final state of this automaton is (qf , qf). By working backwards from

this state, we can deduce that the solutions are precisely λx1.x
n
1 (c(x m

1 (a)))

where n > 0. In general, this can be done by constructing a tree starting

from the final state and conducting a breadth-first search for initial states.

4.4.5 Discussion

The potentially infinite set of results returned by Comon and Jurski’s algo-

rithm (or indeed, any algorithm capable of third-order matching) makes it

at best inconvenient to use in a practical program transformation system.

One solution would be to somehow select representatives from infinite sets of

matches, but it would require a heuristic to determine which were likely to

be useful, making it hard to specify the set of results returned.

118

CHAPTER 4. 4.4. RELATED WORK : THIRD-ORDER MATCHING

An alternative would be to use Comon and Jurski’s algorithm in con-

junction with the restrictions on the pattern we developed for the two-step

matching algorithm (given in Section 4.1). For the same reasons as for the

two-step algorithm, this would guarantee that only a finite set of results

would be returned.

However, the two-step algorithm has certain advantages which we believe

make it more useful for program transformation. Firstly, and most impor-

tantly, its type-free nature makes it more widely applicable than Comon and

Jurski’s algorithm, which is restricted to simply-typed lambda terms.

Secondly, as we have shown in Section 4.1, the two-step algorithm is

strictly more powerful than third-order matching; for simply-typed terms, it

will return all third-order results and in some cases some results of higher

order. However, this is not such an advantage; we have not yet found any

program transformation problems that require this extra power. In fact,

Comon and Jurski also give in the same paper a (rather more complicated)

algorithm which carries out fourth-order matching, again generating a rep-

resentation of the result set, so if fourth-order results really were useful it

would make sense to further investigate using their algorithm.

119

Chapter 5

Practical implementation of

matching

The algorithms described in this thesis have all been implemented as part of

the program transformation system MAG [26]. In this chapter, we describe

MAG and present the essentials of these implementations.

MAG is a term rewriting system that implements the procedure that we

sketched in Section 1.2.1. Given an expression and a set of rewrite rules,

it applies the rewrite rules to the expression repeatedly until no more ap-

ply. These rules can be conditional rules, in which case sub-calculations are

carried out in order to satisfy the side conditions.

It should be noted that MAG is a simple prototype intended to be a

proof-of-concept for the principle of active source, not an industrial strength

transformation system. As such, it lacks many features that would be re-

quired for use in large scale software development. In particular, the lan-

guage MAG transforms is a relatively small subset of full Haskell. It uses

Hindley-Milner types [66] which do not support type classes, amongst other

things. In addition, much of the syntactic sugar of Haskell is missing.

Similarly, we have not implemented the transform . . .where . . .with

syntactic sugar suggested at the end of Section 1.2, and thus rewrite rules

must be specified in a separate file rather than as annotations to the program

120

CHAPTER 5.

being transformed. Every rewrite rule must be given in full even if the details

could be deduced from the program – for example the promotion rule could

be automatically generated from the relevant datatype, and rules that simply

unfold definitions could come from duplicating the relevant program text.

No attempt is made at performing strictness analysis, and thus it is not

possible to specify strictness side conditions to rewrite rules. As a result, the

application of promotion by MAG is technically unsound, and it is incumbent

on the user to verify that promotion has not introduced a potential for non-

termination, or alternatively to guarantee that the transformed program will

not be used on infinite data structures.

The confluence or otherwise of the set of rewrite rules is ignored. As a

consequence, the results of a transformation may be sensitive to the order in

which they are specified (and indeed there may not even be an order which

produces the desired transformation). We took this decision because prov-

ing confluence in a higher-order conditional term rewriting system is rather

difficult [3]. Indeed, even in a first-order unconditional system generating a

confluent set of rules is prone to failure [46].

However, MAG does provide features to help programmers find an appro-

priate set of rewrite rules to apply a transformation. Firstly, the individual

rewrite steps carried out during a calculation (including those from the side

calculations required to apply conditional rules) are output, so that it is easy

to see exactly which rules were applied or not. Secondly, there is an optional

second form of output which shows the substitutions that were generated

during matching for each rule that applied, and the side calculations from

failed attempts at applying conditional rules. This last detail in particular is

invaluable for determining exactly why a rule was not applied in a complex

derivation.

MAG applies rules in the order specified in the theory file, to outermost

subexpressions first. A consequence of this is that we can guarantee that a

particular rule will not be applied to an expression unless all earlier rules

have failed to apply to that expression, which provides the user with some

121

CHAPTER 5. 5.1. EXAMPLE SESSION WITH MAG

rudimentary but easy to understand control over the rewriting process.

5.1 Example session with MAG

Input to MAG comes in three parts. Firstly, a program file, which is currently

only used for typechecking and thus we omit details. Secondly, a theory file

that contains a set of rewrite rules. Finally, the expression to be rewritten.

For the fast reverse example, we use the following theory file:

{- reverse.eq -}

fastreverse: fastreverse xs ys = reverse xs ++ ys;

reverse0: reverse [] = [];

reverse1: reverse (x:xs) = reverse xs ++ [x];

cat0: [] ++ xs = xs;

cat1: (x:xs) ++ ys = x:(xs++ys);

catassoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs);

promotion: f (foldr plusl e xs) = foldr crossl e’ xs,

if {f e = e’;

\ x y -> f (plusl x y)

= \ x y -> crossl x (f y)}

As we described in Section 1.2.1, the specification of fastreverse and the

definitions of reverse and ++ are included as rewrite rules, together with

a law stating the associativity of ++ and the promotion rule. Each rule is

implictly universally quantified over all the free variables appearing in it and

is labelled with a name that is displayed in the derivation when the rule is

applied.

122

CHAPTER 5. 5.1. EXAMPLE SESSION WITH MAG

Recall from Section 1.2 that the fast reverse derivation is acheived by

applying promotion to fastreverse (foldr (:) [] xs) ys . In MAG, terms to be

rewritten should not include free variables. Therefore, we explicitly bind

the variables xs and ys , and instead ask MAG to rewrite the expression

λxs ys .fastreverse (foldr (:) [] xs) ys . Each intermediate step in the deriva-

tion is displayed by MAG, together with the initial and final expressions.

The following is the output from MAG when given the above theory file

as input. Because of the potential for name conflicts, MAG gives fresh names

to all the bound variables in expressions during processing of each rewrite

step, so the names that are displayed bear no relation to the names that were

input. As a minor concession to readability, a final renaming is applied before

pretty-printing so that the set of names used there starts from the letter ’a’,

rather than whatever part of the internal name supply had been reached

during internal processing. Expressions are also η-contracted before being

displayed, hence our initial input is displayed as λa.fastreverse (foldr (:) [] a):

(\ a -> fastreverse (foldr (:) [] a))

= { fastreverse }

(\ a -> (++) (reverse (foldr (:) [] a)))

= { promotion

(++) (reverse [])

= { reverse0 }

(++) []

= { cat0 }

(\ a -> a)

(\ a b -> (++) (reverse (a : b)))

= { reverse1 }

(\ a b -> (++) (reverse b ++ (a : [])))

= { catassoc }

(\ a b c -> reverse b ++ ((a : []) ++ c))

123

CHAPTER 5. 5.2. IMPLEMENTATION

= { cat1 }

(\ a b c -> reverse b ++ (a : ([] ++ c)))

= { cat0 }

(\ a b c -> reverse b ++ (a : c))

}

foldr (\ c d e -> d (c : e)) (\ f -> f)

Notice that the result is also η-contracted. If we want to see the more intuitive

directly recursive form, we will have to unfold the use of foldr manually,

although it would not be particularly difficult to automate this procedure.

Note however that it is better to leave it as a foldr from the point of view

of enabling certain automatic optimisations by the compiler, as detailed in

Section 1.3.2.

5.2 Implementation

As with the rest of MAG, the language used to implement our matching

algorithms is Haskell. Haskell is a lazy functional language, which means

that if users of our algorithms are only interested in the first result (for

example), then unnecessary work is not done in computing the rest; this

effect can be achieved in non-lazy languages but it is necessary to explicitly

encode this “demand-driven” approach. Here we will give just a brief outline

of the more complex or uncommon features that we shall use; for a complete

description of the language and its syntax we refer the reader to [12, 76].

We shall start by presenting a program that closely follows the descrip-

tions of our algorithms in earlier chapters, and then show what optimisa-

tions are necessary to achieve respectable performance. Unfortunately, since

transforming full Haskell is beyond the scope of MAG, most of them must

be applied by hand. We will however use MAG for one optimisation, giving

the details in Section 6.5.

124

CHAPTER 5. 5.2. IMPLEMENTATION

5.2.1 Preliminaries

We shall attempt to make our implementation mirror the more abstract de-

scription given in earlier chapters as closely as possible. For this, it will be

useful to have a syntax for representing the bag and set comprehensions we

used to describe the results of various functions. Conveniently, Haskell has

support for list comprehensions [96] which provide exactly what we need;

[[2 ∗ x | x ∈ X]] can be implemented as [2 ∗ x | x ← X]. If we want to rep-

resent a set, we can use the standard Haskell function nub to remove all

duplicates from a list after it is generated.

We shall take some liberties with Haskell’s syntax for the purposes of

readability. In particular, we shall sometimes use Greek identifiers for vari-

able names, and we shall define some infix operators that are not legal Haskell

names.

The following datatype is used to represent expressions:

data Exp = LVar VarId Type | PVar VarId Type

| Con Constant Type

| Ap Exp Exp Type | Lam VarId Exp Type

This datatype defines an expression (Exp) as either a local variable, a

pattern variable, a constant, an application or a lambda abstraction.

One important detail of this implementation is that, as with any practical

program transformation system, our expressions have types, and these types

might affect whether two expressions could be considered equal or not, or

even whether an expression that we might construct was legal. In addition,

the context in which pattern variables are used on the right-hand side of a

rewrite rule might further restrict the allowable types for expressions which

the matching procedure tried to assign to those pattern variables.

Thus, we need to ensure that any matches we generate are valid for the

type system being used. However, in keeping with our earlier claim that our

matching algorithms are independent of any particular type system, we shall

not go into the details of the types we use, and shall instead view them as an

125

CHAPTER 5. 5.2. IMPLEMENTATION

abstract datatype with a few basic operations. If an implementation which

worked on untyped expressions was required, it would be a simple matter to

remove all the parts which deal with types.

Pattern and local variables are explicitly distinguished from each other

by the use of different constructors, and individual variables of each type are

denoted by an identifier of type VarId . We will take care to ensure that these

identifiers are unique to avoid problems of variable capture; for this purpose

we shall maintain a supply of fresh names from which new identifiers can be

drawn when needed.

Since Haskell is a “pure” language without updatable variables, it is nec-

essary to pass this supply from function to function, which is rather incon-

venient. Therefore, we wrap this supply up in a state monad [101] which

“stores” the list of names and allows functions to access it when needed

without needing to explicitly pass it around. A value of type α that requires

a name supply to be computed is instead given the type Name α, and func-

tions are provided to convert between values of type α and values of type

Name α. The notational penalty we pay for this is that programs have to be

written in a somewhat imperative style.

Alternative approaches to the problem of variable naming would be to

follow the approach of [2] and use an impure function to generate the fresh

names, or to go a stage further and use a language such as FreshML [79] or

some similar work by Miller [64] with built-in support for representing terms

modulo α-conversion.

Unfortunately, the use of a state monad conflicts slightly with the use

of list comprehensions as described above. To achieve an elegant notation,

we make use of monad transformers [60] , which allow certain monads to be

“stacked”. Since lists are also a monad, we can create a combined monad

(which we call NameL) that encapsulates both the name supply and the

notion of maintaining a “list of results”. Instead of using list comprehen-

sions, we use monad comprehensions [100]; as a result, the program for

[[2 ∗ x | x ∈ X]] is written:

126

CHAPTER 5. 5.2. IMPLEMENTATION

do x ← X

return 2 ∗ x

If we require a fresh variable name we make use of the function freshVar ,

which generates a single fresh identifier:

freshVar :: NameL VarId

For example, the following snippet produces a fresh local variable whose type

is t :

do x ← freshVar

return (LVar x t)

Sometimes, we will have a normal list of type [α] that we wish to convert to

a NameL α. For this we use the function liftSt :

liftSt :: [α] → NameL α

We shall not expose the underlying implementation of Subst , the datatype

of substitutions. We manipulate them by the following operations:

idSubst :: Subst

(:=) :: VarId → Exp → Subst

(◦) :: Subst → Subst → Subst

apply :: Substitutable α ⇒ Subst → α → α

The identity substitution is denoted idSubst . The expression (p := e) re-

turns the substitution that maps the pattern variable identified by p to the

expression e and leaves all other variables unchanged. The (◦) function gives

the composition of two substitutions.

Finally, for apply , the function which applies a substitution, we make use

of a type class. Type classes provide Haskell with ad-hoc polymorphism; the

reason we use them is that we would like to be able to apply substitutions

to more than one type using the same function. To do this we make each

of the types an instance of the class Substitutable, providing an appropriate

127

CHAPTER 5. 5.2. IMPLEMENTATION

definition of apply for that type at the same time. In particular, we shall

want to apply substitutions to expressions, rules and lists of rules.

A rule is simply a pair of expressions; no attempt is made in the datatype

definition to enforce the necessary restrictions on the expressions:

newtype Rule = Rule (Exp,Exp)

We use the keyword newtype rather than the more usual data because GHC

is able to optimise away the constructor in a single constructor datatype if

we use this keyword. We cannot use a standard type synonym because we

wish to make Rule an instance of the Substitutable class.

Two pieces of standard Haskell syntax that we shall make heavy use of

are the “ ” placeholder in the list of formal parameters of a definition to

indicate that the definition does not require the value of that argument (and

thus there is no point in giving it a name), and the $ operator which is

just like the normal space operator for function application except that it

has a low precedence and associates to the right, which often removes the

needs for many levels of nested brackets in an expression. Using $ allows us

to write (addone (sum (map square xs))) as (addone $ sum $ map square xs),

for example.

5.2.2 Framework

In this section, we shall implement the framework described in Chapter 2.

Our earlier description of the algorithms parametrised the matches and resolve

functions by the app function. For a practical implementation, it makes more

sense to parametrise by the specific appresolve function for that algorithm,

since app is part of the specification rather than the implementation. To

make this easier, we define the following type synonym:

type AppResolver = Exp → Exp → Exp → NameL [Rule]

In other words, an AppResolver takes three expressions (the function and ar-

gument parts of the pattern and the term) and returns a selection of rule sets.

128

CHAPTER 5. 5.2. IMPLEMENTATION

Recall that NameL encapsulates a list of results and that [Rule] represents a

rule set.

The matches function takes an AppResolver and a rule set, and returns

a selection of substitutions:

matches :: AppResolver → [Rule] → NameL Subst

Its implementation closely reflects the definition given in Section 2.4:

matches [] = return idSubst

matches appresolver (x : xs) =

do (σ, ys) ← expresolve appresolver x

φ ← matches appresolver (apply σ (xs ++ ys))

return (φ ◦ σ)

One slight modification is that, as we remarked earlier, our expressions do

have types, and we need to verify that these match as well. For this reason,

we define a function expresolve which matches the types and then calls the

“real” resolve function. We mentioned earlier that expressions being rewrit-

ten are not allowed to contain free variables; the reason for this is that these

would then appear in the term during matching which would violate the

specification of the matching algorithms. It turns out that expresolve is also

a convenient place to check this restriction.

As with the resolve function that will follow, expresolve takes in an

AppResolver and a rule, and returns a selection of (substitution, rule set)

pairs:

expresolve :: AppResolver → Rule → NameL (Subst , [Rule])

expresolve appresolver (Rule (e1, e2)) =

if not (null (freevars e2))

then error (”free variables in term : ” ++ showExp e2)

else do τ ← liftSt $ singletype (exptype e1) (exptype e2)

(φ, rules) ← resolve appresolver (Rule (e1, e2))

return (φ ◦ τ, apply τ rules)

129

CHAPTER 5. 5.2. IMPLEMENTATION

The exptype function simply returns the type of an expression. We then use

singletype to generate a substitution τ which makes the type of e1 equal to the

type of e2; if this is not possible then singletype will return no substitutions

and thus matching will fail at this point. Otherwise, resolve is called to do

the main work of breaking down rule into a new set of rules together with a

substitution φ. Finally, we apply τ to the set of rules returned and compose

φ and τ to give the final result of expresolve.

As with matches , the implementation of resolve closely mirrors the de-

scription in Section 2.4.2. Its parameters are an AppResolver , which will be

called if the pattern is a function application, and a rule:

resolve :: AppResolver → Rule → NameL (Subst , [Rule])

Two local variables match giving the identity substitution and no more rules,

if and only if they are the same local variable:

resolve (Rule (LVar x ,LVar y)) =

liftSt $ if x == y then [(idSubst , [])]

else []

Similarly, two constants must be the same to match:

resolve (Rule (Con a ,Con b)) =

liftSt $ if c == d then [(idSubst , [])]

else []

A pattern variable will match with any term, as long as the term does not

contain any unbound local variables:

resolve (Rule (PVar p , t))

liftSt $ if null (unboundlocals e) then [(p := t , [])]

else []

Two λ-abstractions match if their bodies match, but we must rename one so

that they are both abstractions over the same local variable:

130

CHAPTER 5. 5.2. IMPLEMENTATION

resolve (Rule (Lam x e ,Lam y f)) =

liftSt [(idSubst , [Rule (e, renamebound y x f)])]

If a λ-abstraction is matched against a non-λ abstraction we η-expand the

term and apply the rule above, as described in Section 2.4.2. The local

variable used to do the η-expansion will be given the same type as the bound

variable in the pattern; the function apl is used to construct a function

application with an appropriate type:

resolve (Rule (Lam x e s , f)) =

liftSt [(idSubst , [Rule (e, apl f (LVar x (argtype s)))])]

The case when the pattern is an application, where our algorithms differ from

each other, is passed to the appresolver function. The substitution returned

in this case is always the identity substitution, so we only require a selection

of rule sets from appresolver :

resolve appresolver (Rule (Ap f a , e)) =

do rules ← appresolver f a e

return (idSubst , rules)

Finally, if none of the above definitions applied then there are no matches:

resolve = liftSt []

5.2.3 Simple matching

The definition for appresolver for simple matching (Section 2.6) is straight-

forward. Either the term is also an application, in which case we return a

single rule set which matches the function and argument parts respectively,

or it does not and we return no rule sets:

simpleappresolve :: AppResolver

simpleappresolve f a (Ap f ′ a ′) = return [Rule (f , f ′),Rule (a, a ′)]

simpleappresolve = liftSt []

131

CHAPTER 5. 5.2. IMPLEMENTATION

5.2.4 One-step matching

The definition of onestepappresolve follows the description in Section 3.2

closely. The operator ++m joins together two NameLs, just like ++ joins two

lists (for those familiar with monads in Haskell, we have made NameL an

instance of MonadPlus , and ++m is just the ‘mplus ‘ operator). The function

lambda is used to simplify the construction of λ-abstractions; the expres-

sion lambda (x , t) e constructs the λ-abstraction whose body is e and whose

bound variable x has type t . The first part of the definition makes use of

simpleappresolve to handle the case where the term is already a function

application:

onestepappresolve :: AppResolver

onestepappresolve f a e =

simpleappresolve f a e

++m

do (f ′, a ′) ← apps e

return [Rule (f , f ′), Rule (a, a ′)]
++m

do x ← freshVar

return [Rule (f , lambda (x , exptype a) e)]

The function apps takes in an expression and returns a selection of pairs

of expressions which give the function and argument parts of a constructed

β-redex:

apps :: Exp → NameL (Exp, Exp)

Again, the definition mirrors Section 3.2.1. The function subsplus returns all

non-empty subsets of its argument, thus eliminating the need for a separate

check for emptiness of loc ′:

132

CHAPTER 5. 5.2. IMPLEMENTATION

apps term =

do x ← freshVar

(subexp, locs) ← liftSt $ collect $ filter okse $ subexps term

locs ′ ← liftSt $ subsplus locs

let t = exptype subexp

let body = replaces term locs ′ (LVar x t)

let func = lambda (x , t) body

if normal func then return (func, subexp)

else liftSt []

where okse (subexp,) = unboundlocals subexp ⊆ oklocals

oklocals = unboundlocals term

5.2.5 Two-step matching

Before invoking the two-step matching algorithm, it is necessary to check

that the restrictions from Section 4.1 are satisfied. The function twostepvalid

takes a pattern and returns a Bool indicating whether it satisfies them:

twostepvalid :: Exp → Bool

A λ-abstraction is a valid pattern if its body is:

twostepvalid (Lam x b) = twostepvalid b

If a function application has a flexible function part, then its argument must

satisfy certain conditions, which are checked in validarg . In any case, both

function and argument parts must themselves both be valid patterns:

twostepvalid (Ap f a) = (not (flex f) ∨ validarg a)

∧ twostepvalid f

∧ twostepvalid a

Finally, anything else must be either a variable or a constant and will cer-

tainly be a valid pattern:

133

CHAPTER 5. 5.2. IMPLEMENTATION

twostepvalid = True

The validarg function is defined as follows. The subsidiary function getpb

splits up an expression λx1 . . . xn .B into the parts { x1 . . . xn } and B :

validarg exp = null (freevars body)

∧ params ⊆ unboundlocals body

∧ (not (null (constants body)

∧ unboundlocals body ⊆ params))

where (params , body) = getpb exp []

getpb (Lam x b) xs = getpb b (x : xs)

getpb e xs = (xs , e)

In other words, the body B can contain no free variables, but must contain

at least one occurrence of each of the arguments { x1 . . . xn }. In addition,

it must either contain at least one constant or at least one unbound local

variable which is not one of { x1 . . . xn }.
Before commencing two-step matching, MAG checks the pattern using

twostepvalid and if it is not valid falls back to the one-step algorithm.

Once more, we follow the description from Section 4.2. If the pattern is

not flexible, we can again make use of simpleappresolve:

twostepappresolve :: AppResolver

twostepappresolve f e t =

if flex f

then do x ← freshVar

b ← liftSt $ abstracts x e t

return [Rule (f , etaRed (lambda (x , exptype e) b))]

else simpleappresolve f e t

The expression abstracts x e t returns all the possible ways in which instances

of the function e can be abstracted from the term t using a local variable

identified by x :

abstracts :: VarId → Exp → Exp → [Exp]

134

CHAPTER 5. 5.2. IMPLEMENTATION

The obvious definition for abstracts would be the following:

abstracts x e t = concat [abstractssub n x e t | n ← [0 . . .]]

However, this will not terminate, since even though there will be some point

after which the abstractssub functions all return empty lists (as we argued

in Section 4.2.1), the computer cannot know this. Therefore, we modify this

definition to the following, making use of the takeWhile function to stop

enumerating abstractssub at the first empty list returned. Clearly, if there

is no way to abstract n instances of e from t then there can be no way to

abstract n + 1 instances either.

abstracts x e t = concat $ takeWhile (not .null) $

[abstractssub n x e t | n ← [0 . . .]]

The function abstractssub takes the same parameters as abstracts , as well as

an integer to indicate how many instances should be abstracted:

abstractssub :: Int → VarId → Exp → Exp → [Exp]

Either we wish to extract 0 instances of e, in which case the only possible

result is t , or we wish to extract n + 1 instances, in which case we first

abstract n instances, then use abstract to abstract an extra one, and finally

use nub to remove any duplicates. Note that it was not necessary to use nub

in the definition of abstracts , since there can be no overlap between results

from calls to abstractssub for different values of n:

abstractssub 0 x e t = [t]

abstractssub (n + 1) x e t = nub [c | b ← abstractssub n x e t ,

c ← abstract x e b]

Abstracting a single instance is done by abstract :

abstract :: VarId → Exp → Exp → [Exp]

The definition is straightforward; we find all subexpressions of t , and for

each one check that it does not already contain x before replacing it with

135

CHAPTER 5. 5.2. IMPLEMENTATION

the result of calling instanc (if any). Note that replace ′ is used to η-reduce

while doing the replacement. There is no need to remove duplicates from the

list generated, each subexpression of t considered will give rise to a different

result:

abstract x e t = [replace ′ t loc r | (s , loc) ← subexps t ,

not (x ‘occursin‘ s),

r ← instanc x e s]

The function instanc is so named because instance is a keyword in Haskell.

We first use params and body to split up e into a list of arguments and a body;

these functions also convert the arguments into pattern variables from local

variables. As we remarked in Section 4.2.1, it is necessary to treat unbound

local variables from body e and t as constants; therefore we freeze them before

starting simple matching and thaw then in the resulting substitutions. The

function funcom lifts a function on expressions to one on substitutions by

applying it to every expression in the range of the substitution. Finally, the

use of evalSt ([], []) provides a name supply to the simple matching algorithm;

since simpleappresolve does not use any fresh names it is safe for this name

supply to be empty:

instanc x e t =

[foldl apl (LVar x (exptype e)) (apply φ xs)

| let xs = params e,

φ ← simplematch (body e) t]

where simplematch p t =

map (funcom (thaw cs)) $

evalSt ([], []) $

matches simpleappresolve [Rule (p ′, t ′)]

where bs = unboundlocals p

cs = unboundlocals t

p ′ = freeze bs p

t ′ = freeze cs t

136

CHAPTER 5. 5.3. EFFICIENCY

5.3 Efficiency

Whilst the above implementation of our algorithms is easy to follow given the

more abstract descriptions from the previous chapters, using it directly leads

to abysmal performance, making MAG completely unusable. It turns out

that two optimisations in particular bring running times down to an accept-

able level. In this section we discuss these two optimisations, various other

possibilities that are only of marginal value at best, and finally give some

rough-and-ready performance statistics to give some quantitative indication

of the value of each optimisation.

5.3.1 Viability test

Often, it is possible to quickly establish that a particular rule cannot be

solved. In particular, any constant in the pattern that does not appear

in a subexpression with a flexible head cannot be removed by substitution

followed by any amount of β-reduction; such a constant is known as a rigid.

If some rigid in the pattern does not appear anywhere in the term, we know

that there can be no matches. The viable predicate encodes this condition:

viable p t = rigids p ⊆ consts t

It is easy to define rigids and consts . Note that local variables bound outside

p and t are also considered as constants for our purposes.

We can take this a step further. If viable p t is false, then p will not match

against any subexpression of t either. Thus, by exporting the viable function

to the term rewriting engine, we can prevent MAG from even trying to apply

rules that have no hope of success.

We also make use of viable in the body of matches . If one of the rules

returned by resolve is not viable, we can throw away the entire set it is

contained in:

137

CHAPTER 5. 5.3. EFFICIENCY

matches appresolver (x : xs) =

do (σ, ys) ← expresolve appresolver x

if all viableRule ys

then do φ ← matches appresolver (apply σ (xs ++ ys))

return (φ ◦ σ)

else liftSt []

viableRule (Rule (p, t)) = viable p t

Finally, it also turns out to be useful to check for viability early on in the

definition of apps . The second element of the tuple it returns, which is always

a subexpression of the term parameter, will be matched against the argument

part of the pattern of the current rule. Thus, if we modify onestepappresolve

slightly to pass this argument part to apps , we can filter the subexpressions

as they are generated:

apps arg term =

do x ← freshVar

(subexp, locs) ← liftSt $ collect $ filter checkse $ subexps term

locs ′ ← liftSt $ subsplus locs

let t = exptype subexp

let body = replaces term locs ′ (LVar x t)

let func = lambda (x , t) body

if normal func then return (func, subexp)

else liftSt []

where viablese (subexp,) = viable arg subexp

okse (subexp,) = unboundlocals subexp ⊆ oklocals

oklocals = unboundlocals term

checkse se = viablese se ∧ okse se

Another possible check we could make is to verify that the pattern and term

of a rule have compatible types. However, this turns out not to produce any

performance gain in practice.

138

CHAPTER 5. 5.3. EFFICIENCY

5.3.2 Checking flexibility

The definition of twostepappresolve includes a check for whether the function

part of the pattern is flexible or not; if not, then we only need to consider the

results from simpleappresolve. This check is an essential part of the two-step

algorithm, whereas it is not needed for the one-step algorithm. However, we

can include it anyway and improve performance significantly:

onestepappresolve f a t =

if flex f then simpleappresolve f a t

++m

do (f ′, a ′) ← apps a t

return [Rule (f , f ′), Rule (a, a ′)]
++m

do x ← freshVar

return [Rule (f , lambda (x , exptype a) t)]

else simpleappresolve f a t

5.3.3 Other optimisations

The two optimisations described above are by far the most important for

achieving acceptable performance. The following are some other changes

that can be made, some of which have some effect on performance and some

of which have none. We detail the performance results in the next section.

• Closely following the description of the algorithm for abstracts from

Section 4.2.1 leads to an obvious inefficiency – abstractssub n x e t will

be computed once directly in the body of abstracts , and once for each

abstracstssub m x e t with m > n that is computed. We use MAG to

address this deficiency in Section 6.5.

• The function apps constructs a λ-abstraction λx .B and then throws it

away if it is not normal. Since B is constructed by replacing subexpres-

sions of T with x , and T is itself normal, the only possibility for λx .B

139

CHAPTER 5. 5.3. EFFICIENCY

not to be normal is if T is of the form (T0 T1) and T1 is replaced by x .

This is equivalent to the locs ′ value being precisely the set of locations

{ 〈Arg〉 }, so we can apply this less expensive test instead.

• The choice to merge the Name monad and the list monad using a

monad transformer to get the NameL monad gives us an elegant pro-

gram, but means that the name supply is “forked” for the computation

of each element of the list, rather than being threaded between the

computations. As a result, a clever compiler such as GHC cannot op-

timise the passing of the name supply by storing it in one place rather

than repeatedly copying it.

Instead, we can abandon the idea of using a monad transformer and

make use of the subtly different datatype Name [α] to pass around lists

of αs, where Name is the normal state monad encapsulating a name

supply.

• In the definition of matches , we take the new rule set generated by

resolve and add it to the beginning of the other rules we had. We have

freedom in how we order the rules in a rule set, and therefore it might

make sense to delay consideration of rules that could be considered

“hard”, in the hope that resolving other rules would make this unnec-

essary. A “hard” rule would be defined as one where the pattern was

an application with a flexible head.

5.3.4 Performance tests

In order to provide an approximate indicator of the effectiveness of each of

the above optimisations, we conducted some simple timing tests by running

MAG on a set of about twenty examples, with the above optimisations pro-

gressively enabled. A more detailed performance analysis would require some

substantially bigger examples and some more work on tuning the implemen-

tation appropriately. We have also not investigated the formal complexity of

our algorithms, second-order matching is known to be NP-complete [8] and

140

CHAPTER 5. 5.3. EFFICIENCY

Optimisation Running time

None >24h

Viability test 43m 44.96s

Checking flexibility 21.02s

Improving abstracts 18.51s

Improving apps 18.72s

Use of Name [α] datatype 18.60s

Considering “hard” rules last 18.79s

Table 5.1: MAG performance tests

thus one-step matching must be at least NP-hard since it returns at least all

the second-order results. The restrictions we impose on two-step matching

mean that we cannot infer anything from the known complexity of third-

order matching (also NP-complete [22, 102]), but it seems likely that it is

also at least NP-hard.

Table 5.1 shows the total running time taken by MAG on our set of

examples, with the listed optimisations progressively enabled. These figures

are almost meaningless for any purpose but comparison with each other,

so we omit details of the environment in which they were produced. We

find that applying the viability test brings running times down from being

completely unacceptable on almost all examples to merely almost entirely

unacceptable; adding the test for flexibility brings them down further to being

quite reasonable on the size of examples we have tried. Of the remaining

optimisations, only the improvements to abstracts had a significant impact;

it is possible that the others would become more important for substantially

larger examples.

141

Chapter 6

Examples

In this chapter, we shall give various examples of examples of derivations

that we have successfully mechanised using MAG. The actual input to and

output from MAG is rather long, so we just present the essential details here.

The full text can be found in Appendix B.

6.1 Minimum depth

We introduced this example in Section 1.2 and in Section 4.1.1 gave it as an

example which requires the use of the two-step algorithm. Here we present

the details of applying the transformation in MAG.

First, recall the datatype of binary trees:

data Tree α = Leaf α | Bin (Tree α) (Tree α)

The fold on this datatype foldbtree is defined by

foldbtree b l (Leaf x) = l x

foldbtree b l (Bin t1 t2) = b (foldbtree b l t1) (foldbtree b l t2)

The corresponding promotion law states that

f (foldbtree b l t) = foldbtree b ′ l ′ t

if ∀a.f (l a) = l ′ a

∀x y .f (b x y) = b ′ (f x) (f y)

142

CHAPTER 6. 6.1. MINIMUM DEPTH

Now, mindepth was defined by

mindepth (Leaf x) = 0

mindepth (Bin s t) = min (mindepth s) (mindepth t) + 1

Recall that the specification of md states:

md t d m = min (mindepth t + d) m

We write this in a form that combines both the specification of the optimisa-

tion and the decision that it should be transformed using promotion on the

argument t :

md t d m = min (mindepth (foldbtree Bin Leaf t) + d) m

It now remains to apply promotion to md , a derivation that almost mirrors

that found in Section 1.2. However, there is one detail we must be careful

of. One of the steps of that derivation was:

min ((min (mindepth s) (mindepth t)) + (1 + d)) m

= {the result of mindepth is non-negative}

if 1 + d≥m then m

else min (min (mindepth s) (mindepth t)

+ (1 + d))

m

This step involves making use of the fact that in a particular case we can

short-circuit the evaluation of both arguments of min. As a result, the origi-

nal expression appears as a subexpression of the final expression, since if this

case does not apply it must be evaluated as before. Therefore, any rewrite

rule that carried out this step would lead to an infinite (and useless) rewriting

chain. Therefore, we formulate a rule that encompasses both this step and

the next step (which distributed + over the inner min in the expression):

min (min a b + n) c = if n≥c then c

else min (min (a + n) (b + n)) c

143

CHAPTER 6. 6.1. MINIMUM DEPTH

Introducing this rule could be considered to be rather dangerous, since it is

not true if a or b is negative, and in a long derivation might be applied in an

unexpected place. In this instance we can deal with this problem by using a

datatype for numbers that excludes negative values entirely, but in general

this is not an adequate solution. One answer would be to annotate the

rule with the relevant assumption. Using a theorem prover to discharge this

assumption would be a possibility, but this is a rather heavyweight technique

that might not succeed, and goes against our principle that the behaviour

of MAG should be easy to predict and understand. A better option would

be for MAG simply to remember that the assumption was made and present

this to the user along with the final result (with the relevant pattern variables

appropriately instantiated). It would then be incumbent on the user to verify

that the rule had been used appropriately.

With these difficulties dealt with, the rest is straightforward. We give

MAG the above rules, together with rules giving associativity of + and min

and the definitions of +, md and mindepth, to get the following result:

md

= {promotion (. . .)}

foldbtree (λf g d m. if 1 + d≥m

then m

else f (1 + d) (g (1 + d) m)

)

(λx d m.min d m)

Unfolding (and η-expanding) this new definition for md gives us the more

readable

md (Leaf x) d m = min d m

md (Bin t1 t2) d m = if 1 + d≥m

then m

else md t1 (1 + d) (md t2 (1 + d) m)

If we now combine this with the definition of mindepth in terms of md , we

have the desired optimisation:

144

CHAPTER 6. 6.2. ALPHA-BETA PRUNING

mindepth t = md t 0∞

6.2 Alpha-beta pruning

A rather more sophisticated optimisation than mindepth is the problem of

alpha-beta pruning. Consider a program designed to play a game such as

chess. In order to choose a move from any given position, the program

will generate a tree representing possible paths of play from that position.

The position at the end of each path will have a score associated with it,

representing the value of that position to the computer. The computer then

searches through this tree trying to choose the move that will result in the

best possible situation for it; the key point to note is that alternate moves are

controlled by the opponent who will presumably be trying to choose moves

that will result in the worst possible situation for the computer, and therefore

the computer needs to allow for this when evaluating moves.

The procedure by which the tree is searched is known as minimaxing; the

value of the top node of the tree is the maximum of the values of all the nodes

at the next level down. These values are calculated by taking the minima

of those one further down, which are calculated by taking maxima of those

below them, and so on. The value of a leaf is simply the value of the position

at that leaf.

As with mindepth, this algorithm is clear but inefficient; it will often be

the case that we can ignore large sections of the search tree. For example,

consider the tree shown in Figure 6.1. Scanning it from right-to-left, it is

immediately apparent that the computer can make a score of 3 by making

move A. If on the other hand the computer chooses move B, then the other

player could choose move C and obtain a final result of 2 for the computer.

Thus, it is apparent just by examining the leaves marked 2 and 3 that choos-

ing move A will result in a score of 3, and assuming rational and intelligent

opposition move B will result in a score of at most 2. Clearly it is not worth

145

CHAPTER 6. 6.2. ALPHA-BETA PRUNING

�
�
�
�

�
	
�

�
	
�

�
�
�
�

@
@
@
@

�
	
�

@
@
@
@

�
	
�

�
	
�

�
�
�
�

@
@
@
@

�
	
�

�
	
�

3

2

56

3

2

6

AB

C

Figure 6.1: A game tree: labelled leaves indicate termination of the game

with that score for the computer, and labelled nodes show the overall value

of that node for the computer.

exploring move B further.

We can generalise this insight by maintaining two accumulating parame-

ters representing the minimum and maximum possible values for the current

tree being explored. This allows us to cut off the search of a subtree once we

know that the subtree cannot affect the eventual result. This optimisation

was first applied in a functional setting by Bird and Hughes [13].

An alternative approach to the minimax algorithm is to always maximise

the negation of the values at the level beneath; this approach avoids the need

to continually swap back and forth between minimising and maximising and

thus simplifies the statement of the optimisation problem. MAG is capable

of dealing with the problem in either form, but for the purposes of simplicity

of presentation we take the latter approach here. We also require that the

input tree must have leaves on alternate levels negated; this saves us from

having to introduce an extra parameter to keep track of whose move it is.

146

CHAPTER 6. 6.2. ALPHA-BETA PRUNING

�
�
�
�

�
	
�

�
	
�

�
�
�
�

@
@
@
@

�
	
�

@
@
@
@

�
	
�

�
	
�

�
�
�
�

@
@
@
@

�
	
�

�
	
�

-3

2

-5-6

3

-2

6

AB

C

Figure 6.2: The game tree from Figure 6.1 with leaves and nodes for the

opponent’s turn negated

Figure 6.2 shows the tree from Figure 6.1 appropriately modified.

The datatype for rose trees, RTree is defined as follows:

data RTree α = RLeaf α | RNode [RTree α]

This datatype differs from the ones we have considered so far because the

recursion in the definition is actually an implicit expression of two mutually

recursive datatypes. The following would be equivalent:

data RTree α = RLeaf α | RNode (RForest α)

data RForest α = RNil | RCons (RTree α) (RForest α)

As a result, the fold function over RTrees is also defined by mutual recursion;

as with other fold functions it replaces the constructors in its argument with

functions.

rtreefold leaf node cons nil (RLeaf x) = leaf x

147

CHAPTER 6. 6.2. ALPHA-BETA PRUNING

rtreefold leaf node cons nil (RNode ts) =

rforestfold leaf node cons nil ts

rforestfold leaf node cons nil RNil = nil

rforestfold leaf node cons nil (RCons t ts) =

cons (rtreefold leaf node cons nil t)

(rforestfold leaf node cons nil ts)

This mutual recursion also complicates the definition of the promotion law

somewhat; the side conditions generate a new function f ′ which does not

appear on the right-hand side of the main law. This function is effectively

the equivalent of f for the rforestfold part of the fold.

f (rtreefold leaf node cons nil t)

= rtreefold leaf ′ node ′ cons ′ nil ′ t

if ∀a.f (leaf a) = leaf ′ a

f ′nil = nil ′

∀x y .f ′ (cons x y) = cons ′ (f x) (f ′ y)

∀a.f (node a) = node ′ (f ′ a)

The näıve evaluation function for a game tree, which we name flipeval because

it evaluates the values of all its children and then flips their sign, is defined

as follows:

flipeval (RLeaf x) = x

flipeval (RNode ts) = listmax (map (negate ◦ flipeval) ts)

The quantity that flipeval is evaluating is the value of the current position

to whoever is next to play. Thus, if the current position is a leaf, the game

has terminated with that score to them. Otherwise, the position is a node,

each of whose children evaluate to the value of that choice to the opponent.

Therefore, we evaluate them, and negate the result to give the value to the

current player before taking the maximum.

To optimise this, we first introduce the function bound , which given a

value x and lower and upper bounds a and b respectively, gives x if it is

between the bounds, a if it is below them and b if it is above them:

148

CHAPTER 6. 6.2. ALPHA-BETA PRUNING

bound x a b = min (max a x) b

We can now specify the function fastflipeval , which evaluates a tree t subject

to bounds a and b. It can be used to redefine flipeval simply by instantiating

the bounds to −∞ and ∞ respectively.

fastflipeval t a b = bound (flipeval (rtreefold RLeaf RNode (:) [] t)) a b

flipeval t = fastflipeval t −∞∞

We now give the rewrite rules that will be required. The obvious rule for

distributing bound over max is the following:

bound (max c d) a b = bound c (bound d a b) b

In other words, we first update the lower bound using the value of d , and

then bound c using the new bounds.

However, consider what will happen if d ≥ b. In this case, bound d a b

will evaluate to b, and so the entire expression will evaluate to b without

any need to examine the value of c. It is this observation which encodes the

insight we described earlier that allows parts of the search to be cut off.

Therefore, we give the following rewrite rule:

bound (max c d) a b = if a ′ == b then b

else bound c a ′ b
where a ′ = bound d a b

In addition to this rule, we will need to know how bound distributes over

negate and how it interacts with −∞:

bound (negate c) a b = negate (bound c (negate b) (negate a))

bound −∞ a b = a

Applying these rules together with the appropriate definitions and unfolding

gives us the following program. Note that the definition of bound is not

included in the set of rewrite rules; since it does not pattern match on its

149

CHAPTER 6. 6.3. STEEP SEQUENCES

argument, such a rewrite rule would be always applicable and would interfere

with the more specialised rules above that are essential to this derivation.

fastflipeval (Leaf x) a b = bound x a b

fastflipeval (Node ts) a b = fastflipeval ′ ts a b

fastflipeval ′ [] a b = a

fastflipeval ′ (t : ts) a b =

if a ′ == b then b

else negate (fastflipeval t (negate b) (negate a ′))

where a ′ = fastflipeval ′ ts a b

6.3 Steep sequences

We now show how tupling optimisations can also be accomplished with pro-

motion. A sequence (represented here as a list) is considered to be steep if

each element is larger than the sum of all its successors. The program for

this is written as follows:

steep [] = True

steep (x : xs) = x > sum xs ∧ steep xs

For each element of the list, the sum of the rest of the list will be calculated

and then thrown away, despite the fact that this value would be useful for

the same calculation for any elements further to the left in the sequence. We

can specify faststeep to keep track of both the steepness (or not) and the

current sum:

faststeep xs = (steep xs , sum xs)

steep xs = fst (faststeep xs)

We can apply promotion to this specification by replacing both instances

of xs on the right-hand side of faststeep with foldr (:) [] xs , but there is a

150

CHAPTER 6. 6.3. STEEP SEQUENCES

difficulty. In unfolded form, the optimised program we are expecting would

be:

faststeep [] = (True, 0)

faststeep (x : xs) = (x > sm ∧ st , x + sm)

where (st , sm) = faststeep xs

In other words, one of the functions generated during matching will have

to be a λ-abstraction of the form λ (st , sm) . . ., i.e. one which breaks up a

tuple of values. Our matching algorithms are not capable of generating such

functions, so MAG will fail to apply this optimisation.

To circumvent this problem, we specialise the promotion rule for a tupling

optimisation. Define the functions split and uncurry as follows:

split f f ′ x = (f x , f ′ x)

uncurry f (x , y) = f x y

Now, recall the promotion rule for lists:

f (foldr g e xs) = foldr h e ′ xs

if f e = e ′

∀x , y : f (g x y) = h x (f y)

Replace the function f by the expression split f f ′ and apply the definition

of split on the right-hand side of the conditions. The first condition is un-

changed, but the second becomes:

∀x , y : (f (g x y), f ′ (g x y)) = h x (f y , f ′ y)

Now, define h ′ by h x = uncurry (h ′ x). The above condition now becomes

∀x , y : (f (g x y), f ′ (g x y)) = h ′ x (f y) (f ′ y)

Since it is h ′ that the matching algorithm has to find a value for, it no longer

needs to construct a λ-abstraction that takes apart a tuple, and MAG will

151

CHAPTER 6. 6.4. THE PATH SEQUENCE PROBLEM

be able to apply the following modified promotion rule:

split f f ′ (foldr g e xs) = foldr (λx .uncurry (h ′ x)) e ′ xs

if split f f ′ e = e ′

∀x , y : split f f ′ (g x y) = h ′ x (f y) (f ′ y)

With this difficulty dealt with, we rewrite the specification of faststeep in

terms of split , steep and sum and add the identity fold as a seed, as usual:

faststeep xs = split steep sum (foldr (:) [] xs)

It just remains to give MAG the definitions of steep, sum and split to apply

the optimisation. No extra rewrite rules are required.

6.4 The path sequence problem

The most complex derivation we have carried out using MAG is Bird’s path

sequence problem [9]. The problem is this: given a directed graph and a list of

vertices xs , determine the length of the longest (not necessarily contiguous)

subsequence of xs that is a connected path in the graph. The graph is

represented as a predicate arc on pairs of vertices indicating whether they

are connected or not.

The straightforward program for this algorithm is the following. The

function subs simply returns all subsequences of its argument.

llp xs = listmax (map length (filter path (subs xs)))

The path function is defined in the obvious way:

path [] = True

path [x] = True

path (x : y : xs) = arc x y ∧ path (y : xs)

Since the number of subsequences of xs is exponential in the length of xs , so is

this algorithm. However, it seems likely that there will be a lot of duplicated

152

CHAPTER 6. 6.4. THE PATH SEQUENCE PROBLEM

work, since many of the subsequences will have large parts in common with

each other.

To gain a hint as to how we might optimise it, we first do some calculation

(using MAG) on llp applied to empty and non-empty lists. With the addition

of a few reasonably straightforward rewrite rules to the definitions, we obtain

the following:

llp [] = 0

llp (x : xs) = max (listmax (map length (filter path (subs xs)))

(1 + listmax (map length

(filter (λys .path (x : ys)) (subs xs))

The first argument to max in this new formula for llp (x : xs) is just llp xs .

The second argument suggests that it might make sense to introduce a new

function, llp ′, defined as follows:

llp ′ x xs = listmax (map length (filter (λys .path (x : ys)) (subs xs)))

This function returns the length of the longest path in xs that could be

prefixed by x and still give a path.

Having done this, we can define fastllp using tupling, Notice that the

second element of the tuple is a function

fastllp xs = (llp xs , λx .llp ′ x xs)

Writing this in the form required to apply the specialised promotion rule for

tupling we described in the previous section, we get:

split llp (λys x .llp ′ x ys) (foldr (:) [] xs)

Applying promotion gives the following (unfolded) result. Again, the extra

rewrite rules required are relatively straightforward.

fastllp [] = (0, λx .0)

fastllp (y : ys) = (max l l ′, λx . if arc x y then max (f x) l ′

else f x

)

153

CHAPTER 6. 6.4. THE PATH SEQUENCE PROBLEM

where (l , f) = fastllp ys

l ′ = 1 + f y

This program is certainly an improvement on the original; the intermediate

lists produced by subs have been removed, as has the need to explicitly scan

each of these lists from one end to the other to check whether it is a path.

However, the presence of the function in the second element of the tuple,

coupled with the fact that this function makes two calls to the corresponding

function on the remainder of the list, means that this is still an exponential

program.

To do better than this, we define the following.

llp ′′ ts xs = max (llp xs) (listmax (map (λ(k , x).k + llp ′ x xs) ts))

The idea is essentially that we keep track of a list of the current possible

path prefixes. We do not need to remember all the elements of each prefix,

simply the length and the last element.

We can then redefine llp by instantiating the list of prefixes to the empty

list:

llp xs = llp ′′ [] xs

To apply promotion to our definition of llp ′′, we first rewrite the λ-abstraction

so that it does not have a tuple for a parameter. It is not hard to add

support for such λ-abstractions if we do not expect the matching algorithms

to return such results, but it would have complicated the description of the

implementation in the previous chapters somewhat and we therefore chose

to leave this out.

llp ′′ ts xs = max (llp xs)

(listmax (map (λkx .(fst kx + llp ′ (snd kx) xs) ts))

Next, we define fastllp ′′ with the usual identity fold. Since we are expecting

to obtain an expression for fastllp ′′ expressing it as a fold on the xs that

manipulates the accumulating parameter ts , we write the definition fastllp ′′

with the parameter xs first:

154

CHAPTER 6. 6.5. OPTIMISING ABSTRACTS

fastllp ′′ xs ts = llp ′′ ts (foldr (:) [] xs)

Most of the rewrite rules required for the derivation are quite straightforward,

as before. However, there are two that are not. Firstly, at one point MAG

needs to apply to commutativity of max . Clearly we cannot just use the

obvious rule; instead we specialise it so that it will only apply forwards at

the appropriate point.

The second is the following:

v + (1 + llp ′ y ys) = (λkx .fst kx + llp ′ (snd kx) ys) (1 + v , y)

This rule essentially states how a newly computed path prefix can be ex-

pressed as a tuple of the length and the final element (we derived the precise

form of this and the specialised rule for the commutativity of max by ob-

serving where the derivation got stuck without the rules present).

Running this derivation through MAG and unfolding gives the following

quadratic time program:

llp ′′ ts [] = max 0 (listmax (map fst ts))

llp ′′ ts (x : xs) = llp ′′ ((v , x) : ts) xs

where v = 1 + max 0 (listmax (map fst

(filter (λt .arc (snd t) x) ts)))

6.5 Optimising abstracts

For our final example we move away from promotion calculations and carry

out a derivation on fixed points instead. As we remarked in Section 5.3.3,

the definition of the abstracts function that we gave in Section 5.2.5 has the

disadvantage that it repeatedly recomputes certain values. Here we show

how MAG can be used to eliminate this inefficiency.

Rewriting the definitions to use the map and concat functions instead of

list comprehensions (which MAG does not support), we have the following:

abstracts x e t = concat $ takeWhile (not .null) $

map (λn.abstractssub n x e t) (from 0)

155

CHAPTER 6. 6.5. OPTIMISING ABSTRACTS

abstractssub 0 x e t = [t]

abstractssub (n + 1) x e t = nub (concat (map (abstract x e b)

(abstractssub n x e t)))

We have also written [0 . . .] as the expression from 0, where the function

from is defined in terms of a more general function iterate:

iterate f x = x : iterate f (f x)

from n = iterate (+1) n

It would be nicer to be able to define from as a directly recursive function:

from n = n : from (n + 1)

Unfortunately, it is impossible to then use MAG to automatically derive the

version based on iterate. Any attempt to use this definition as a rewrite

rule would lead to an infinite rewriting chain, and thus we cannot “seed” our

derivation as we did with promotion.

The first step of the derivation is to use the following map-iterate law to

fuse the map and the from in the definition of abstracts :

map g (iterate f x) = iterate h y

if g x = y

∀a : g (f a) = h (g a)

Next, we define iterate in terms of a more basic function fix . Placing the

rewrite rule that applies this definition after the map-iterate law in the theory

file ensures that this definition will only be applied after that law has been

used.

fix rec = rec (fix rec)

iterate f x = fix (λg y .y : g (f y)) x

156

CHAPTER 6. 6.5. OPTIMISING ABSTRACTS

The fixpoint fusion law states that:

func (fix rec x) = fix rec ′ x

if func strict

∀f : func ◦ (rec f) = rec ′ (func ◦ f)

We give MAG the map-iterate law, the fixpoint fusion law and the fol-

lowing two laws about if :

if not b then x else y = if b then y else x

f (if b then x else y) = if b then f x else f y

All this leaves us with the following program for abstracts :

abstracts x e t =

fix (λf ts . if null ts

then []

else ts ++ f (nub (concat (map (abstract x e) ts)))) [t]

Since MAG cannot check the strictness condition in the application of fix-

point fusion itself, it is necessary to verify it manually. This is rather more

important for fixpoint derivations than for those involving promotion, since

there is much more potential to introduce non-termination.

Unfolding the definition of fix using the auxiliary function abstracts ′ leaves

us with:

abstracts ′ :: VarId → Exp → [Exp] → [Exp]

abstracts ′ x e ts =

if null ts

then []

else ts ++ (abstracts ′ x e (nub (concat (map (abstract x e) ts))))

abstracts x e t = abstracts ′ x e [t]

157

Chapter 7

Discussion

This work on active source is part of a larger effort currently underway to

develop an Intentional Programming (IP) system [83]. The goal is to produce

a system in which domain-specific languages, that is languages specialised for

a particular programming task (such as GUI design or database access), can

be implemented easily. The idea is that individual language features, known

as intentions because they should be designed to enable users to program

with them in an intuitive fashion, are implemented in a highly modular

fashion. Higher-level intentions would be implemented in terms of lower-level

intentions as much as possible. Of course, much of this could equally well be

implemented as a combinator library in a very high-level language with a rich

type system such as Haskell. Where IP differs substantially from this line of

research is that an intention writer should be able to describe domain-specific

optimisation opportunities that might arise when their intentions are being

used, as well as giving a basic description of how they are constructed. It is

here that our work fits in; it is very likely that many of these optimisations

will suffer from the problems we outlined in the introduction, namely that

completely automatic application would be infeasible or impossible.

For active source to be a success, the annotations to the code should be

robust; if at all possible, the intended transformation should still apply after

a change is made to the original program. Experience with MAG suggests

158

CHAPTER 7.

that they are relatively immune to changes to the original program that are

not directly relevant to the transformation; for example it is straightforward

to reuse the core of the fast reverse annotations to optimise a similar program

that carries out a post-order traversal of a rose tree. However, they tend to

be extremely sensitive to changes that do affect the transformation; in an

example such as mindepth which relies on the associativity of + to correctly

update the accumulating parameter containing the current depth, altering

the order of the arguments to + without also altering the sense of the as-

sociativity rule is fatal to the derivation. In such situations, interactivity is

vital to help the programmer quickly identify that there is a problem and to

rectify it with the help of information from the transformation system about

where a derivation failed.

Of course, the source-to-source rewrites that we have focused on in this

thesis are just one of many kinds of transformation that could benefit from

being defined in annotations to the source code. The transformations we

have described are essentially algorithmic refinements. Sanabria-Piretti [80]

has shown how packages of first-order rewrite rules known as transforms can

be used to carry out data refinements, translating a program from using

abstract datatypes to concrete implementations. A key feature of his work is

the abstract specification of a datatype can expose a limited interface that is

not tuned for any particular implementation, but during the transformation

process particular patterns of access can be recognised and translated to an

efficient implementation; thus for example if the interface to a set includes

operations to find the minimum element and to delete a given element and

the set is then implemented as an ordered list, a sequence of operations in

the original program that asks for the minimum element and then deletes it

can be refined to simply finding the head of a list and then replacing the list

by its tail.

159

CHAPTER 7. 7.1. MAG

7.1 MAG

Promotion is a powerful technique for program optimisation. Many complex

derivations, some of which we have presented here, start with a program that

can be expressed as a fold over an inductive datatype and add some accumu-

lating parameters to produce another program that is a fold over the same

datatype. Indeed, we have not yet found an example of such a derivation

which cannot be recast in terms of the appropriate promotion rule. In addi-

tion, the combination of the two matching algorithms we have presented here

has always been enough to mechanise the use of promotion, given the deriva-

tions for the individual side conditions. Of course, it is this last proviso that

is the sticking point with MAG. As we made clear in Chapter 5, its rewriting

strategy is rather primitive, and the experience of the path sequence problem

in particular suggests that this approach will not scale well. On the other

hand, the simplicity of MAG is also something of an advantage from the

point of view of interactivity; it is relatively straightforward to understand

why a transformation is not working, even if dealing with this problem may

prove cumbersome. The clear specification of our matching algorithms is an

important part of providing this understanding.

For larger examples, one solution might be to make use of configurable

rewriting strategies, which are essentially meta-programs supplied by the user

which guide the use of rewrite rules. They have been extensively studied in,

for example, [21, 56, 91, 92]. If the required strategies for any particular

problem could be expressed concisely, they could be included as part of the

transformation annotation. A related but simpler possibility would be to

continue to employ brute-force rewriting, but allow the user to override the

process at certain points by specifying that a certain rule should be given

priority when the current term matches a particular pattern (which would

presumably be a specialisation of the left-hand side of the rule specified).

It is hoped that MAG can be a useful teaching tool (indeed, it was orig-

inally written for this purpose). Undergraduate students of functional pro-

gramming are often taught the basics of calculational program derivation but

160

CHAPTER 7. 7.2. VARIATIONS ON OUR ALGORITHMS

do not have enough time to experiment enough to gain experience with this.

By eliminating the need to deal with the tedious details of such calculations,

students might be able to learn more of the guiding principles.

Clearly, MAG requires significant work to make it really usable by others

as a tool for program derivation. Much of this work is mostly cosmetic

in nature – most importantly, the parser needs to be modified to handle

input syntax similar to that suggested on page 17, and the generation of the

promotion rule for any particular datatype should be mechanised. The final

program resulting from a promotion or fixpoint derivation is often somewhat

unreadable and could be automatically unfolded to present it to the user.

However, it should probably be left expressed in terms of the appropriate

higher-order function for passing to GHC, given the potential for the short-

cut deforestation optimisations we discussed in Section 1.3.2.

More significantly, the treatment of side conditions should be improved

to allow different types of side conditions to be handled in a modular fashion.

We have already seen that the lack of strictness analysis is a weakness for

promotion and fixpoint derivations, but other conditions may be necessary

in order to use MAG to apply different derivation rules. Another useful

feature would be the ability to transform full Haskell – recent development of

independent type-checking and parsing modules for Haskell would hopefully

make implementing this easier [53, 73].

7.2 Variations on our algorithms

The decision to develop and use the matching algorithms presented here,

rather than making use of existing matching or unification algorithms, was

motivated by the desire to have algorithms that were both clearly speci-

fied and capable of solving the matching problems generated by the kind of

transformation we have described here. We feel that this was a worthwhile

goal; although all the matching problems we have encountered can also be

solved by Huet’s higher-order unification procedure [44] (as implemented in

161

CHAPTER 7. 7.2. VARIATIONS ON OUR ALGORITHMS

λProlog [67]), the user is offered no guarantees that this will be the case –

indeed, Larry Paulson, one of the main authors of Isabelle, a widely-used

theorem prover which makes use of Huet’s procedure, has described it as

“powerful but sometimes ill-behaved” [75] and suggested instead using Huet

and Lang’s matching algorithm.

In Section 6.3, we described a procedure of specialising a promotion rule

to deal with tupling optimisations. The original version of MAG, as described

in [26], was based on the one-step matching algorithm only and use was made

of a similar procedure to solve problems such as minimum depth. The idea is

not new; Pfenning and Elliott suggested it for dealing with variable capture

problems [78], based on an similar technique in [74]. Although this solution

does work, it is somewhat inconvenient – in particular, it is rather difficult

to understand the specialised rule. It seems better from the point of view of

user transparency to deal with the issue in the matching algorithm, which

performs a function that is intuitively easy to grasp. It was for this reason

that we developed the two-step algorithm, and hope in future work to deal

with the tupling issue also by developing a matching algorithm that can carry

out matching modulo products, that is where necessary generating functions

that deconstruct tuples.

With regard to other developments of our algorithms, various avenues of

investigation are open. The next stage beyond matching modulo products

would be to carry out matching modulo coproducts and generate functions

with case statements to choose between the different elements of a con-

structed datatype. However, our suspicion is that it would be difficult to

restrict this problem sufficiently to obtain a specification which guarantees

decidability and a finite set of results but was also useful for solving non-

trivial matching problems.

The names of the one-step and two-step algorithms naturally lead to

questions about three-step, or even n-step matching. There are two reasons

why we do not believe this would be a fruitful line of inquiry. Firstly, we

remarked earlier that we have not yet found an example of a derivation of

162

CHAPTER 7. 7.3. IMPLEMENTATION OF MATCHING

the kind that we are interested which we could not express in terms of a

promotion rule. It is also the case that once recast in this way, none of these

derivations were prevented from being mechanised because the results of our

matching algorithms were not “higher-order enough”. Thus, from a practical

point of view we see no need to extend them in this direction, although we

have not investigated transformations of programs involving continuation-

passing code or parser combinators, two areas in which functions of quite

high order naturally arise.

Secondly, we feel that the extra complexity of the two-step matching

algorithm compared to that of the one-step algorithm suggests that any pos-

sible algorithm for three-step matching would be very difficult to produce

and prove correct. Additionally, the restrictions on patterns that would be

required to guarantee a finite set of results would be much stronger than

those of the two-step algorithm, which might lead to problems when actually

trying to use such an algorithm.

Another extension would be to incorporate some knowledge of semantic

laws of the expressions being matched. For example, associative-commutative

matching would allow the matching algorithm to make use of such algebraic

properties of functions in the terms being matched; thus for example the

pattern x + 1 could match against the term 1 + 2. Various systems, for

example ELAN [14] and Maude [56] have implemented this.

7.3 Implementation of matching

The λ-calculus is a powerful and simple syntax for encoding programs, but

real programming languages are rather more complicated. For languages such

as Haskell, it is straightforward to perform a translation, but for imperative

languages in particular this is likely to be more complex. Recent work on

generic, or polytypic programming may offer a solution; languages such as

PolyP [5, 51] and Generic Haskell [49] (currently unfinished) allow programs

to be written which traverse data structures in a manner that is independent

163

CHAPTER 7. 7.3. IMPLEMENTATION OF MATCHING

of the actual datatype involved. A simple (first-order) pattern matcher has

already been implemented in this way [50].

Conceptually, the application of a set of rewrite rules to an expression is

best described by a procedure of matching the left-hand side of each rule in

turn against the expression. This is also the simplest way to implement it,

but is not very efficient since the term is traversed once for each rule. Cai [16]

describes a procedure for carrying out simple matching against a particular

term for many patterns at once by traversing the term bottom-up; extending

this to higher-order matching would introduce significant complications since

the matching process is no longer a completely straightforward tree traversal.

Since the one-step algorithm works by abstracting subexpressions from the

term when a function application is present in the pattern, the difficulties

might be surmountable by keeping a list of all subexpressions seen while

traversing the term. The core of the two-step algorithm uses the bodies of

functions appearing in the pattern on the right-hand side of applications

with flexible heads as patterns for simple matching, and thus adding all such

bodies to the set of patterns being considered might make Cai’s algorithm

applicable here too.

Our implementation uses the traditional trees to represent λ-terms. Trees

have the advantage of being easy to manipulate, but they are not necessarily

the most efficient structure to use for term rewriting. In particular, trees do

not allow us to take advantage of common subexpressions in the term being

rewritten. Instead, we could represent terms as fully collapsed jungles, a kind

of directed acyclic graph in which all occurrences of any particular subexpres-

sion are represented by a single subgraph [42]. It seems that this approach

should be particularly valuable for the one-step matching algorithm, which

frequently needs to collect common subexpressions, although profiling data

from our performance tests suggest that there would not be a significant gain

for the small examples we have worked with so far.

164

CHAPTER 7. 7.4. OTHER APPLICATIONS

7.4 Other applications

Finally, higher-order matching also has applications beyond the field of term

rewriting. Matching is used to recognise occurrences of the left-hand side of a

rewrite rule in an expression before replacing the occurrence with the right-

hand side of the rewrite rule (appropriately instantiated). Allowing side-

conditions enables some quite general transformations to be expressed in such

a way, but rewrite rules are not always powerful enough. In some cases, using

matching to recognise application sites before doing more complex analysis to

actually carry out the transformation would make sense. For example, loop

strengthening is a transformation that identifies situations in a loop body

where the loop variable is multiplied by a constant factor on each iteration,

and replaces this with a new variable that is appropriately initialised and

incremented by that constant factor each time instead. Pattern matching

would be appropriate for spotting this pattern, but the actual transformation

requires some careful calculation and code reorganisation that might be best

carried out by a more sophisticated processor than a term rewriting engine.

165

Bibliography

Numbers following each entry indicate the page(s) where references occur.

[1] A. V. Aho. Algorithms for finding patterns in strings. In J. van
Leeuwen, editor, Handbook of Theoretical Computer Science, Algo-
rithms and complexity, volume A, chapter 5, pages 255–300. Elsevier,
Amsterdam, The Netherlands, 1990. 31

[2] L. Augustsson, M. Rittri, and D. Synek. Functional pearl: On generat-
ing unique names. Journal of Functional Programming, 4(1):117–123,
1994. 126

[3] J. Avenhaus and C. Loŕıa-Sáenz. Higher-order conditional rewriting
and narrowing. In J. Jouannaud, editor, First International Conference
on Constraints in Computational Logics, number 845 in Lecture Notes
in Computer Science, pages 269–284. Springer-Verlag, 1994. 121

[4] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998. 18

[5] R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic pro-
gramming – an introduction. In Third International Summer School
on Advanced Functional Programming, volume 1608 of Lecture Notes
in Computer Science, pages 28–115. Springer-Verlag, 1998. 163

[6] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics.
Studies in Logic and the Foundations of Mathematics. North-Holland,
1984. 40, 64, 65, 65

[7] H. P. Barendregt. Lambda calculi with types. In S. Abramsky, D. M.
Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Com-
puter Science, volume 2, pages 117–309. Oxford Science Publications,
1992. 32, 65

166

BIBLIOGRAPHY

[8] L. D. Baxter. The Complexity of Unification. Ph.D. thesis, University
of Waterloo, 1976. 140

[9] R. S. Bird. The promotion and accumulation strategies in transforma-
tional programming. ACM Transactions on Programming Languages
and Systems, 6(4):487–504, 1984. Erratum, ibid. 7(3):490–492, 1985.
13, 152

[10] R. S. Bird. An introduction to the theory of lists. In M. Broy, editor,
Logic of Programming and Calculi of Discrete Design, volume F36 of
NATO ASI Series, pages 5–42. Springer–Verlag, 1987. 14

[11] R. S. Bird. Lectures on constructive functional programming. In
M. Broy, editor, Constructive Methods in Computing Science, volume
F55 of NATO ASI Series, pages 151–216. Springer–Verlag, 1989. 14

[12] R. S. Bird. Introduction to Functional Programming in Haskell. Inter-
national Series in Computer Science. Prentice Hall, 1998. 124

[13] R. S. Bird and R. J. M. Hughes. An alpha–beta algorithm: an exercise
in program transformation. Information Processing Letters, 24(1):53–
57, 1987. 146

[14] P. Borovanský, C. Kirchner, H. Kirchner, P. Moreau, and M. Vit-
tek. ELAN: A logical framework based on computational systems.
In J. Meseguer, editor, Electronic Notes in Theoretical Computer
Science, volume 4. Elsevier Science Publishers, 1996. Available
from URL: http://www.elsevier.nl/gej-ng/31/29/23/29/23/37/

tcs4004.ps. 163

[15] R. M. Burstall and J. Darlington. A transformation system for de-
veloping recursive programs. Journal of the ACM, 24(1):44–67, 1977.
13

[16] J. Cai, R. Paige, and R. E. Tarjan. More efficient bottom-up multi-
pattern matching in trees. Theoretical Computer Science, 106(1):21–60,
1992. 164

[17] W. Chin. Safe fusion of functional expressions. In 7th ACM Conf on
Lisp and Functional Programming, pages 11–20. ACM Press, 1992. 23

[18] W. Chin. Safe fusion of functional expressions II: Further improve-
ments. Journal of Functional Programming, 4(4):515–555, 1994. 23

167

http://www.elsevier.nl/gej-ng/31/29/23/29/23/37/tcs4004.ps
http://www.elsevier.nl/gej-ng/31/29/23/29/23/37/tcs4004.ps

BIBLIOGRAPHY

[19] W. Chin and S. Khoo. Better consumers for deforestation. In D. Swier-
stra, editor, Programming Languages: Implementations, Logics and
Programs, volume 982 of Lecture Notes in Computer Science, pages
223–240. Springer-Verlag, 1995. 23

[20] O. Chitil. Type-inference based short cut deforestation (nearly) with-
out inlining. In C. Clack and P. Koopman, editors, Eleventh Interna-
tional Workshop on Implementation of Functional Languages, volume
1868 of Lecture Notes in Computer Science, pages 19–36. Springer-
Verlag, 2000. 24

[21] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In
J. Meseguer, editor, Proceedings of the First International Workshop on
Rewriting Logic, volume 4 of Electronic Notes in Theoretical Computer
Science, pages 65–89. Elsevier, 1996. 160

[22] H. Comon and Y. Jurski. Higher-order matching and tree automata. In
M. Nielsen and W. Thomas, editors, Proc. Conf. on Computer Science
Logic, volume 1414 of Lecture Notes in Computer Science, pages 157–
176. Springer-Verlag, 1997. 33, 113, 141

[23] R. Curien, Z. Qian, and H. Shi. Efficient second-order matching. In 7th
International Conference on Rewriting Techniques and Applications,
volume 1103 of Lecture Notes in Computer Science, pages 317–331.
Springer Verlag, 1996. 85

[24] N. G. de Bruijn. Lambda calculus notation with nameless dummies.
a tool for automatic formula manipulation with application to the
church-rosser theorem. Indagationes Mathematicae, 34:381–392, 1972.
36

[25] P. de Groote. Linear higher-order matching is NP-complete. In L. Bach-
mair, editor, 11th International Conference on Rewriting Techniques
and Applications, volume 1833 of Lecture Notes in Computer Science,
pages 127–140, 2000. 33

[26] O. de Moor and G. Sittampalam. Generic program transformation.
In Third International Summer School on Advanced Functional Pro-
gramming, volume 1608 of Lecture Notes in Computer Science, pages
116–149. Springer-Verlag, 1998. 120, 162

[27] O. de Moor and G. Sittampalam. Higher-order matching for pro-
gram transformation. In A. Middledorp, editor, Proceedings of the 4th

168

BIBLIOGRAPHY

Fuji International Symposium on Functional and Logic Programming,
volume 1722 of Lecture Notes in Computer Science, pages 209–224.
Springer-Verlag, 1999. Extended Abstract. Available from URL: http:
//www.comlab.ox.ac.uk/oucl/work/oege.demoor/pubs.htm. 63

[28] O. de Moor and G. Sittampalam. Higher-order matching for pro-
gram transformation. Theoretical Computer Science, 269:135–162,
2001. Available from URL: http://www.comlab.ox.ac.uk/oucl/

work/oege.demoor/pubs.htm. 63

[29] G. Dowek. L’indécidabilité du filtrage du troisième ordre dans les cal-
culs avec types dépendants ou constructeurs de types. Comptes rendus
à l’Académie des Sciences I, 312:951–956, 1991. Erratum, ibid. 318:873,
1994. 33

[30] G. Dowek. A second-order pattern matching algorithm for the cube
of typed lambda calculi. In A. Tarlecki, editor, Mathematical Founda-
tions of Computer Science, volume 520 of Lecture Notes in Computer
Science, pages 151–160. Springer-Verlag, 1991. 33, 85

[31] G. Dowek. Third order matching is decidable. In M. Nielsen and
W. Thomas, editors, Logic in Computer Science, pages 2–10. IEEE,
1992. 33

[32] G. Dowek. The undecidability of pattern matching in calculi where
primitive recursive functions are representable. Theoretical Computer
Science, 107(2):349–356, 1993. Note. 33

[33] G. Dowek, G. Huet, and B. Werner. On the definition of the eta-
long normal form in type systems of the cube. In H. Geuvers, ed-
itor, Informal Proceedings of the Workshop on Types for Proofs and
Programs, Nijmegen, The Netherlands, 1993. Available from URL:
http://pauillac.inria.fr/~dowek/Publi/eta.ps.gz. 35

[34] L. Fegaras, T. Sheard, and T. Zhou. Improving programs which re-
curse over multiple inductive structures. In ACM SIGPLAN Work-
shop on Partial Evaluation and Semantics-Based Program Manipu-
lation, 1994. Available from URL: ftp://ftp.dina.kvl.dk/pub/

Staff/Peter.Sestoft/pepm94-proceedings/fegaras.ps.gz. 24

[35] F. Gécseg and M. Steinby. Tree automata. Akadémiai Kiadó, Budapest,
1984. 113

169

http://www.comlab.ox.ac.uk/oucl/work/oege.demoor/pubs.htm
http://www.comlab.ox.ac.uk/oucl/work/oege.demoor/pubs.htm
http://www.comlab.ox.ac.uk/oucl/work/oege.demoor/pubs.htm
http://www.comlab.ox.ac.uk/oucl/work/oege.demoor/pubs.htm
http://pauillac.inria.fr/~dowek/Publi/eta.ps.gz
ftp://ftp.dina.kvl.dk/pub/Staff/Peter.Sestoft/pepm94-proceedings/fegaras.ps.gz
ftp://ftp.dina.kvl.dk/pub/Staff/Peter.Sestoft/pepm94-proceedings/fegaras.ps.gz

BIBLIOGRAPHY

[36] N. Ghani. βη-equality for coproducts. In M. Dezani-Ciancaglini and
G. Plotkin, editors, Typed Lambda Calculi and Applications, volume
902, pages 171–185, 1995. 35

[37] A. Gill, J. Launchbury, and S. L. Peyton Jones. A short cut to defor-
estation. In Functional Programming Languages and Computer Archi-
tecture, pages 223–232. ACM Press, 1993. 23, 28, 29

[38] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987. 33

[39] W. Goldfarb. The undecidability of the second-order unification prob-
lem. Theoretical Computer Science, 13(2):225–230, 1981. 32

[40] C. M. Hoffman. Group-theoretic algorithms and graph isomorphism.
Number 136 in Lecture Notes in Computer Science. Springer-Verlag,
1982. 31

[41] C. M. Hoffman and M. J. O’Donnell. Pattern matching in trees. Journal
of the Association for Computing Machinery, 29(1):68–95, 1982. 31

[42] B. Hoffmann and D. Plump. Implementing term rewriting by jun-
gle evaluation. R. A. I. R. O. Informatique Theorique et Applica-
tions/Theoretical Informatics and Applications, 25, 1991. 164

[43] G. Huet. The undecidability of unification in third order logic. Infor-
mation and Control, 22(3):257–267, 1973. 32

[44] G. Huet. A unification algorithm for typed λ-calculus. Theoretical
Computer Science, 1:27–57, 1975. 161

[45] G. Huet. Résolution d’équations dans les langages d’ordre 1,2,...,ω.
Thése doctorat d’état, Université Paris VII, Paris, France, 1976. 32

[46] G. Huet. A complete proof of the Knuth-Bendix completion algorithm.
Journal of Computer and System Sciences, 23:11–21, 1981. 121

[47] G. Huet and B. Lang. Proving and applying program transforma-
tions expressed with second-order patterns. Acta Informatica, 11:31–
55, 1978. 33, 63, 79

[48] R. J. M. Hughes. Why Functional Programming Matters. Computer
Journal, 32(2):98–107, 1989. 7

170

BIBLIOGRAPHY

[49] J. Jeuring. Generic Haskell project proposal. Available from URL:
http://www.cs.ruu.nl/research/projects/generic-haskell/gh.

ps. 163

[50] J. Jeuring. Polytypic pattern matching. In Functional Programming
Languages and Computer Architecture, pages 238–248. ACM Press,
1995. 164

[51] J. Jeuring and P. Jansson. Polytypic programming. In J. Launchbury,
E. Meijer, and T. Sheard, editors, Advanced Functional Programming,
Second International School, number 1129 in Lecture Notes in Com-
puter Science, pages 68–114. Springer-Verlag, 1996. 163

[52] P. Johann and E. Visser. Warm fusion in Stratego: A case study in the
generation of program transformation systems. Annals of Mathematics
and Artificial Intelligence, 39:1–34, 2000. 24

[53] M. P. Jones. Typing Haskell in Haskell. Avaiable from URL: http:
//www.cse.ogi.edu/~mpj/thih/. 161

[54] N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall, 1993. 25

[55] J. Ketonen. EKL - a mathematically oriented proof checker. In Confer-
ence on Automated Deduction, number 170 in Lecture Notes in Com-
puter Science, pages 65–79. Springer-Verlag, 1984. 33

[56] C. Kirchner, H. Kirchner, and M. Vittek. Implementing computational
systems with constraints. In P. Kanellakis, J. Lassez, and V. Saraswat,
editors, PPCP’93: First Workshop on Principles and Practice of Con-
straint Programming, 1993. MIT Press. 160, 163

[57] D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching
in strings. SIAM Journal of Computation, 6(1):323–350, 1977. 31

[58] B. Krieg-Brückner, J. Liu, H. Shi, and B. Wolff. Towards correct,
efficient and reusable transformational developments. In M. Broy and
S. Jähnichen, editors, KORSO: Methods, Languages, and Tools for the
Construction of Correct Software, volume 1009 of Lecture Notes in
Computer Science, pages 270–284. Springer-Verlag, 1995. 63

[59] J. Launchbury and T. Sheard. Warm fusion: Deriving build-catas
from recursive definitions. In Functional Programming Languages and
Computer Architecture, pages 314–323. ACM Press, 1995. 24

171

http://www.cs.ruu.nl/research/projects/generic-haskell/gh.ps
http://www.cs.ruu.nl/research/projects/generic-haskell/gh.ps
http://www.cse.ogi.edu/~mpj/thih/
http://www.cse.ogi.edu/~mpj/thih/

BIBLIOGRAPHY

[60] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular
interpreters. In Conference Record of POPL’95: 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. ACM
Press, 1995. 126

[61] G. Malcolm. Homomorphisms and promotability. In J. van der Snep-
scheut, editor, Mathematics of Program Construction, volume 375 of
Lecture Notes in Computer Science, pages 335–347. Springer-Verlag,
1989. 14

[62] G. Malcolm. Data structures and program transformation. Science of
Computer Programming, 14:255–279, 1990. 14

[63] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming
with bananas, lenses, envelopes and barbed wire. In Functional Pro-
gramming and Computer Architecture, volume 523 of Lecture Notes in
Computer Science, pages 124–144. Springer-Verlag, 1991. 14, 24

[64] D. Miller. An extension to ML to handle bound variables in data
structures. In Proceedings of the Logical Frameworks BRA Workshop,
1990. Available from URL: ftp://ftp.cis.upenn.edu/pub/papers/
miller/mll.pdf. 126

[65] D. Miller. A logic programming language with lambda-abstraction,
function variables, and simple unification. Journal of Logic and Com-
putation, 1:479–536, 1991. 33, 88

[66] R. Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17:348–375, 1978. 29, 120

[67] G. Nadathur. The metalanguage λProlog and its implementation.
In H. Kuchen and K. Ueda, editors, Functional and Logic Program-
ming, volume 2024 of Lecture Notes in Computer Science, pages 1–20.
Springer-Verlag, 2001. 162

[68] L. Németh. Catamorphism-Based Program Transformations for Non-
Strict Functional Languages. Ph.D. thesis, University of Glasgow, 2000.
24

[69] T. Nipkow. Higher-order unification, polymorphism, and subsorts. In
S. Kaplan and M. Okada, editors, Proc. 2nd International Workshop
on Conditional and Typed Rewriting Systems, volume 516 of Lecture
Notes in Computer Science, pages 436–447. Springer-Verlag, 1990. 33

172

ftp://ftp.cis.upenn.edu/pub/papers/miller/mll.pdf
ftp://ftp.cis.upenn.edu/pub/papers/miller/mll.pdf

BIBLIOGRAPHY

[70] T. Nipkow. Functional unification of higher-order patterns. In 8th
IEEE Symposium on Logic in Computer Science, pages 64–74. IEEE
Computer Society Press, 1993. 34

[71] Y. Onoue, Z. Hu, H. Iwasaki, and M. Takeichi. A calculational fusion
system HYLO. In R. S. Bird and L. Meertens, editors, IFIP TC2
Working Conference on Algorithmic Languages and Calculi, pages 76–
106. Chapman and Hall, 1997. 24

[72] V. Padovani. Filtrage d’ordre supérieure. Thése doctorat d’état, Uni-
versité Paris VII, Paris, France, 1996. 33

[73] S. Panne, S. Marlow, and N. Winstanley. hsparser: The
100% pure Haskell parser. Available from URL: http:

//www.pms.informatik.uni-muenchen.de/mitarbeiter/panne/

haskell_libs/hsparser.html. 161

[74] L. C. Paulson. Natural deduction as higher-order resolution. Journal
of Logic Programming, 3:237–258, 1986. 162

[75] L. C. Paulson. Designing a theorem prover. In S. Abramsky, D. M.
Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in Com-
puter Science, volume 2, pages 415–475. Oxford University Press, 1992.
162

[76] S. L. Peyton Jones and J. Hughes, editors. The Haskell 98 Report,
1999. Available from URL: http://www.haskell.org/definition/.
124

[77] S. L. Peyton Jones, A. Tolmach, and T. Hoare. Playing by the rules:
rewriting as a practical optimisation technique in GHC. Submitted to
ICFP 2001. Available from URL: http://www.research.microsoft.
com/users/simonpj/papers/rules.ps.gz. 30

[78] F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proc.
SIGPLAN ’88 Conf. on Programming Language Design and Implemen-
tation, pages 199–208. ACM Press, 1988. 162

[79] A. M. Pitts and M. J. Gabbay. A metalanguage for programming with
bound names modulo renaming. In R. Backhouse and J. N. Oliveira,
editors, Proceedings of Fifth International Conference on Mathematics
of Program Construction (MPC2000), volume 1837 of Lecture Notes in
Computer Science, pages 230–255. Springer-Verlag, 2000. 126

173

http://www.pms.informatik.uni-muenchen.de/mitarbeiter/panne/haskell_libs/hsparser.html
http://www.pms.informatik.uni-muenchen.de/mitarbeiter/panne/haskell_libs/hsparser.html
http://www.pms.informatik.uni-muenchen.de/mitarbeiter/panne/haskell_libs/hsparser.html
http://www.haskell.org/definition/
http://www.research.microsoft.com/users/simonpj/papers/rules.ps.gz
http://www.research.microsoft.com/users/simonpj/papers/rules.ps.gz

BIBLIOGRAPHY

[80] I. Sanabria-Piretti. Data refinement by transformation. D.Phil. thesis,
Oxford University, 2001. In preparation. 159

[81] A. Schubert. Linear interpolation for the higher-order matching prob-
lem. In M. Bidoit and M. Dauchet, editors, Theory and Practice of
Software Development, volume 1214 of Lecture Notes in Computer Sci-
ence, pages 441–452. Springer-Verlag, 1996. 33

[82] T. Sheard and L. Fegaras. A fold for all seasons. In Functional Program-
ming and Computer Architecture, pages 233–242. ACM Press, New
York, 1993. 24

[83] C. Simonyi. Intentional programming: Innovation in the legacy age.
Presented at IFIP Working group 2.1. Available from URL http://

www.research.microsoft.com/research/ip/, 1996. 158

[84] G. Sittampalam and O. de Moor. Higher-order pattern matching
for automatically applying fusion transformations. In O. Danvy and
A. Filinski, editors, Proceedings of 2nd Symposium on Programs as
Data Objects, volume 2053 of Lecture Notes in Computer Science,
pages 198–217. Springer-Verlag, 2001. Available from URL: http:

//www.comlab.ox.ac.uk/oucl/work/oege.demoor/pubs.htm. 87

[85] M. Sørenson. A grammar-based data-flow analysis to stop deforesta-
tion. In S. Tison, editor, Trees in Algebra and Programming – CAAP
’94, number 787 in Lecture Notes in Computer Science, pages 335–351.
Springer-Verlag, 1994. 23

[86] J. Springintveld. Third-order matching in the polymorphic lambda
calculus. In G. Dowek, J. Heering, M. K., and B. Möller, editors,
Higher-Order Algebra, Logic and Term Rewriting, volume 1074 of Lec-
ture Notes in Computer Science. Springer-Verlag, 1995. 33

[87] J. Springintveld. Third-order matching in the presence of type con-
structors. In M. Dezani-Ciancaglini and G. D. Plotkin, editors, Typed
Lambda Calculi and Applications, volume 902 of Lecture Notes in Com-
puter Science, pages 428–442. Springer-Verlag, 1995. 33

[88] A. Takano and E. Meijer. Shortcut deforestation in calculational form.
In Conf. Record 7th ACM SIGPLAN/SIGARCH Intl. Conf. on Func-
tional Programming Languages and Computer Architecture, FPCA’95,
pages 306–316. ACM Press, 1995. 24

174

http://www.research.microsoft.com/research/ip/
http://www.research.microsoft.com/research/ip/
http://www.comlab.ox.ac.uk/oucl/work/oege.demoor/pubs.htm
http://www.comlab.ox.ac.uk/oucl/work/oege.demoor/pubs.htm

BIBLIOGRAPHY

[89] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor,
Handbook on Theoretical Computer Science, Vol. A, pages 133–191.
Elsevier, 1990. 113

[90] V. Turchin. The concept of a supercompiler. ACM Transactions on
Programming Languages and Systems, 8(3):292–325, 1986. 25

[91] E. Visser. Strategic pattern matching. In P. Narendran and M. Rusi-
nowitch, editors, Rewriting Techniques and Applications (RTA’99), vol-
ume 1631 of Lecture Notes in Computer Science, pages 30–44, 1999.
Springer-Verlag. 160

[92] E. Visser. Language independent traversals for program transfor-
mation. In J. Jeuring, editor, Workshop on Generic Programming
(WGP’00), 2000. Technical Report UU-CS-2000-19, Department of
Information and Computing Sciences, Universiteit Utrecht. Avail-
able from URL: http://www.cs.uu.nl/~visser/ftp/Vis2000.ps.

gz. 160

[93] E. Visser. Stratego: A language for program transformation based on
rewriting strategies. System description of Stratego 0.5. In A. Middel-
dorp, editor, Rewriting Techniques and Applications (RTA’01), number
2051 in Lecture Notes in Computer Science, pages 357–362. Springer-
Verlag, 2001. 24

[94] P. Wadler. Listlessness is better than laziness: lazy evaluation and
garbage collection at compile-time. In ACM Symposium on Lisp and
Functional Programming, 1984. 23

[95] P. Wadler. Listlessness is better than laziness II: composing listless
functions. In Workshop on Programs as Data Objects, volume 217 of
Lecture Notes in Computer Science, 1985. Springer-Verlag. 23

[96] P. Wadler. List comprehensions. In S. Peyton Jones, editor, The Imple-
mentation of Functional Programming Languages, chapter 7. Prentice-
Hall International, 1987. 125

[97] P. Wadler. The concatenate vanishes. Technical report, University
of Glasgow, 1989. Available from URL: http://cm.bell-labs.com/
who/wadler/papers/vanish/vanish.pdf. 8

[98] P. Wadler. Theorems for free! In Conference on Functional Pro-
gramming Languages and Computer Architecture, pages 347–359. ACM
Press, 1989. 29

175

http://www.cs.uu.nl/~visser/ftp/Vis2000.ps.gz
http://www.cs.uu.nl/~visser/ftp/Vis2000.ps.gz
http://cm.bell-labs.com/who/wadler/papers/vanish/vanish.pdf
http://cm.bell-labs.com/who/wadler/papers/vanish/vanish.pdf

BIBLIOGRAPHY

[99] P. Wadler. Deforestation: transforming programs to eliminate trees.
Theoretical Computer Science, 73(2):231–248, 1990. 23

[100] P. Wadler. Comprehending monads. Mathematical Structures in Com-
puter Science, 2:461–493, 1992. (Special issue of selected papers from
6th Conference on Lisp and Functional Programming.). 126

[101] P. Wadler. The essence of functional programming. In 19th ACM Sym-
posium on Principles of Programming Languages, pages 1–14. ACM
Press, 1992. 126

[102] D. A. Wolfram. The Clausal Theory of Types, volume 21 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press,
1993. 32, 141

176

Index

mindepth, see minimum depth

cat-elimination, 8, 21, 63, 87

deforestation, 23, 24, 25–30
short-cut, 23, 27–30, 161

fast reverse, 8–10, 16–22, 63, 69,
122–124

fusion, 14, 23–24
fixpoint, 157
warm, 24

GHC, 23, 24, 29, 128, 140, 161
Glasgow Haskell Compiler, see GHC

Haskell, 7, 14, 15, 35, 39, 120, 124,
132, 158

Generic, 163
Glasgow Haskell Compiler, see

GHC
Huet, 32, 33, 63, 65, 69, 79–86, 161

Intentional Programming, 158

MAG, 1, 7, 120–141
matching

associative-commutative, 163
modulo coproducts, 162
modulo products, 162
one-step, 1, 42, 63–79, 85, 87,

88, 91, 132–133, 134, 139,
162, 164

simple, 34, 60–62, 91, 100, 131,
164

two-step, 1, 42, 87–113, 119,
133–136, 139, 142, 162, 164

minimum depth, 10–13, 25, 87, 94–
95, 142–145

monad, 132
comprehension, 126
list, 140
state, 126, 140
transformer, 126, 140

patterns
higher-order, 31, 33, 88
linear, 33

promotion, 6, 8–22, 24, 94, 121,
122, 160

binary tree, 94, 142
list, 14–16, 151
mechanisation, 18–22
rose tree, 148

term rewriting, 18, 120, 164

177

Appendix A

Quick reference

A.1 Definitions and notation

• Expressions are built recursively from variables, constants, applications
and λ-abstractions

• Variables are either pattern (free) or local (bound).

• a, b, c denote constants.

• p, q , r denote pattern variables.

• x , y , z denote local variables.

• Capital letters denote arbitrary expressions.

• Application is written with a space, so F E denotes F applied to E .

• λ-abstraction is written: λx .B

• = is equality modulo α-conversion.

• ' is equality modulo αη-conversion.

• An expression is closed if it does not contain any pattern variables.

• A β-redex is an expression of the form (λx .B) E , with β-contractum
(x := B)E .

• A η-redex is an expression of the form λx .F x with x not occurring in
F . Its η-contractum is F .

178

APPENDIX A. A.2. SPECIFICATION

• An expression is β-normal if it contains no β-redexes, η-normal if it
contains no η-redexes, and βη-normal, or just normal, if it contains
neither.

• β→ is the relation denoting reduction of a single β-redex in an expres-

sion, with reflexive transitive closure
β→ ∗ .

• S � E states that S is a subexpression of E .

• S /� E states that S is not a subexpression of E , or equivalently that
S does not occur in E .

• A direction is either Func, Arg or Body to denote the function and
argument parts of an application and the body of a λ-abstraction re-
spectively.

• A location is a sequence of directions denoting a position in a term; 〈〉
denotes the root of the term, and _ is the operator which joins two
locations one after another. dir ; loc is shorthand for 〈dir〉_loc.

• The substitution (p := λx .x , q := λy .y) makes the indicated assigments
to p and q and leaves all other variables unchanged.

• (φ ◦ ψ)E = φ (ψE)

• φ ≤ ψ ≡ ∃δ : δ ◦ φ = ψ

• P → T is a rule with pattern P and term T .

• Xs � Ys indicates that the measure of Xs is strictly less than the
measure of Ys in a lexicographic comparison.

• φ `app P → T ≡ reduce app (φP) ' T

A.2 Specification

A.2.1 Beta-reduction

reduce app c = c

reduce app x = x

reduce app p = p

reduce app (λx .E) = λx .(reduce app E)

reduce app (E1 E2) = app (reduce app E1) (reduce app E2)

179

APPENDIX A. A.2. SPECIFICATION

reduce ′ app c = c

reduce ′ app x = x

reduce ′ app p = p

reduce ′ app (λx .E) = etared (λx .(reduce ′ app E))

reduce ′ app (E1 E2) = etanormalise

(app (reduce ′ app E1) (reduce ′ app E2))

full (λx .B) E = reduce full ((x := E)B)

full F E = F E

none F E = F E

step = reduce once

once (λx .B) E = (x := E)B

once F E = F E

twostep = reduce twice

markedstep = reduce markedstep

twice (λx .B) E = unmark (reduce markedonce ((x := mark E)B))

twice E1 E2 = E1 E2

mark c = c

mark x = x

mark p = p

mark (λx .E) = λ′x .(mark E)

mark (E1 E2) = E1 E2

markedonce (λ′x .B) E = (x := E)B

markedonce E1 E2 = E1 E2

unmark c = c

unmark x = x

unmark p = p

unmark (λx .E) = λx .(unmark E)

unmark (λ′x .E) = λx .(unmark E)

unmark (E1 E2) = (unmark E1) (unmark E2)

180

APPENDIX A. A.2. SPECIFICATION

A.2.2 Matching

M is a match set with respect to app of Xs if:

• For all φ: φ `app Xs iff there exists ψ ∈M such that ψ ≤ φ.

• For all φ1, φ2 ∈M: if φ1 ≤ φ2, then φ1 = φ2.

A.2.3 resolve

For a particular app function, suppose that

resolve app X = [[(σ0,Ys0), (σ1,Ys1), . . . , (σk ,Ysk)]]

We require that

(1) For all substitutions φ:

(φ `app X) ≡
∨

i

(φ `app Ysi ∧ σi ≤ φ)

(2) For all substitutions φ and indices i and j :

(φ `app Ysi) ∧ (φ `app Ysj) ⇒ i = j

(3) For each index i , σi is pertinent to X .

(4) The pattern variables in Ysi are contained in the pattern variables of X .

(5) For each index i :

Ysi � X

A.2.4 appresolve

Suppose that appresolve app F E T = [[Ys1, ...,Ysk]]. Then we require that:

{1} For all substitutions φ:

etanormalise (app (reduce ′ app (φF)) (reduce ′ app (φE))) = T

≡∨
i φ `app Ysi

{2} For all substitutions φ:

(φ `app Ysi) ∧ (φ `app Ysj) ⇒ i = j .

181

APPENDIX A. A.3. IMPLEMENTATION

{3} The pattern variables in Ysi are contained in the pattern variables of
F E .

{4} For each index i :

Ysi � (F E → T) .

A.3 Implementation

A.3.1 matches

matches app :: [[Rule]]→ [[Subst]]

matches app [[]] = [[idSubst]]

matches app ([[X]] + Xs) = [[(φ ◦ σ) | (σ,Ys) ∈ resolve app X ,
φ ∈ matches app (σ (Xs + Ys))]]

A.3.2 resolve

X resolve app X
x → y [[(idSubst , [[]])]], if x = y

[[]], otherwise
a → b [[(idSubst , [[]])]], if a = b

[[]], otherwise
p → T [[(p := T , [[]])]], if T does not contain

unbound local variables
[[]], otherwise

(λx .P)→ (λx .T) [[(idSubst , [[P → T]])]]
(λx .P)→ T [[(idSubst , [[P → (T x)]])]]
(F E)→ T [[(idSubst ,Ys) |Ys ∈ appresolve app F E T]]
P → T [[]]

A.3.3 appresolve none

appresolve none F E (T0 T1) = [[[[F → T0,E → T1]]]]

appresolve none F E T = [[]], if T 6= T0 T1

182

APPENDIX A. A.3. IMPLEMENTATION

A.3.4 appresolve once

appresolve once F E T = [[[[(F → T0), (E → T1)]] | (T0 T1) = T]]

+ [[[[(F → T0), (E → T1)]] | (T0,T1)← apps T]]

+ [[[[F → (λx .T)]] | x fresh]]

apps T = [[(λx .B , S) | (S , locs)← collect (subexps T),
unboundlocals S ⊆ unboundlocals T ,
locs ′ ⊆ locs ,
locs ′ 6= { },
B = replaces T locs ′ x ,
λx .B normal,
x fresh]]

A.3.5 appresolve twice

appresolve twice F E T = [[[[F → etaRed(λx .B)]] |
x fresh,B ← abstracts x E T]]

if F flexible

appresolve twice F E (T1 T2) = [[[[F → T1,E → T2]]]]

if F not flexible

appresolve twice F E T = [[]]

abstracts x E T = ∪{ abstractsn x E T | n = 0 . . . }

abstracts0 x E T = {T }
abstracts(n+1) x E T = { (y := x)C | B ∈ abstractsn x E T ,

C ∈ abstract x y E B ,
y fresh }

abstract x y E T = { etanormalise (replace loc R T)

| (S , loc) ∈ subexps T
x /� S
R ∈ instance y E S }

instance y E S = { y (φ x1) ... (φ xm)

| (x1, . . . , xm) = params E
φ ∈ matches none [[body E → S]] }

183

Appendix B

MAG derivations

B.1 Minimum depth

Theory file

{- mindepth.eq -}

md: md t d m = min (mindepth (foldbtree Bin Leaf t) + d) m;

plusunit: 0+a = a;
plusassoc: (a+b)+c = a+(b+c);

minassoc: min (min a b) c = min a (min b c);

cutmin: min (min mq mr + s) c
=
if s>=c
then c
else min (min (mq +s) (mr+s)) c;

mindepth0: mindepth (Leaf a) = 0;
mindepth1: mindepth (Bin x y) = min (mindepth x) (mindepth y) + 1;

treefusion: h (foldbtree plus f t) = foldbtree times g t,
if { \b -> h (f b) = \b -> g b;

\x y -> h (plus x y) = \x y -> times (h x) (h y) }

184

APPENDIX B. B.1. MINIMUM DEPTH

Derivation

md
= { md }

(\ a b -> min (mindepth (foldbtree Bin Leaf a) + b))
= { treefusion

(\ a b -> min (mindepth (Leaf a) + b))
= { mindepth0 }

(\ a b -> min (0 + b))
= { plusunit }

(\ a -> min)

(\ a b c -> min (mindepth (Bin a b) + c))
= { mindepth1 }

(\ a b c -> min ((min (mindepth a) (mindepth b) + 1) + c))
= { plusassoc }

(\ a b c -> min (min (mindepth a) (mindepth b) + (1 + c)))
= { cutmin }

(\ a b c ->
(\ d ->
if e >= d
then d
else min (min (mindepth a + e) (mindepth b + e)) d

)
where e = 1 + c
)

= { minassoc }
(\ a b c ->
(\ d ->
if e >= d then d

else min (mindepth a + e)
(min (mindepth b + e) d)

)
where e = 1 + c
)

}
foldbtree (\ d e f ->

(\ g -> if a >= g then g else d a (e a g))
where a = 1 + f
)
(\ h -> min)

185

APPENDIX B. B.2. ALPHA-BETA PRUNING

B.2 Alpha-beta pruning

Theory file

fastflipeval: fastflipeval t a b
= bound (flipeval (idrtreefold t)) a b;

idrtreefold: idrtreefold = rtreefold RLeaf RNode (:) [];

{- bound: bound x a b = min (max a x) b; -}

flipeval0: flipeval (RLeaf x) = x;
flipeval1: flipeval (RNode ts)

= listmax (map (negate.flipeval) ts);

listmax0: listmax [] = neginf;
listmax1: listmax (x:xs) = max x (listmax xs);

map0: map f [] = [];
map1: map f (x:xs) = f x : map f xs;

compose: (f.g) x = f (g x);

boundmax: bound (max c d) a b
= let a’=bound c a b in

if a’==b then b
else bound d a’ b;

negbound: bound (negate c) a b
= negate (bound c (negate b) (negate a));

boundneginf: bound neginf a b = a;

promotion:
f (rtreefold leaf node cons nil t)
= rtreefold leaf’ node’ cons’ nil’ t,

if {
\x -> f (leaf x) = \x -> leaf’ x;
f’ nil = nil’;
\x y -> f’ (cons x y) = \x y -> cons’ (f x) (f’ y);
\x -> f (node x) = \x -> node’ (f’ x)

186

APPENDIX B. B.2. ALPHA-BETA PRUNING

}

Derivation

fastflipeval
= { fastflipeval }

(\ a -> bound (flipeval (idrtreefold a)))
= { idrtreefold }

(\ a -> bound (flipeval (rtreefold RLeaf RNode (:) [] a)))
= { promotion

(\ a -> bound (flipeval (RLeaf a)))
= { flipeval0 }

bound

bound (listmax (map (\ c -> negate (flipeval c)) []))
= { map0 }

bound (listmax [])
= { listmax0 }

bound neginf
= { boundneginf }

(\ a b -> a)

(\ a b ->
bound (listmax (map (\ e -> negate (flipeval e))

(a : b)))
)

= { map1 }
(\ a b ->
bound (listmax (negate (flipeval a)

:
map (\ e -> negate (flipeval e)) b))

)
= { listmax1 }

(\ a b ->
bound (max (negate (flipeval a))

(listmax (map (\ e -> negate (flipeval e)) b)))
)

= { boundmax }
(\ a ->
(\ b c d ->
(if g == d

then d

187

APPENDIX B. B.2. ALPHA-BETA PRUNING

else bound (listmax (map (\ e -> negate (flipeval e))
b))

g
d

)
where g = bound f c d
)
where f = negate (flipeval a)
)

= { negbound }
(\ a ->
(\ b c d ->
if bound (negate f) c d == d
then d
else bound (listmax (map (\ e -> negate (flipeval e))

b))
(negate (bound f (negate d) (negate c)))
d

)
where f = flipeval a
)

= { negbound }
(\ a ->
(\ b c ->
(\ d ->
(if h == d

then d
else bound (listmax (map (\ e -> negate (flipeval e))

b))
h
d

)
where h = negate (bound f (negate d) g)

)
where g = negate c
)
where f = flipeval a
)

(\ a -> bound (flipeval (RNode a)))
= { flipeval1 }

(\ a -> bound (listmax (map (negate . flipeval) a)))

188

APPENDIX B. B.3. STEEP SEQUENCES

= { compose }
(\ a ->
bound (listmax (map (\ d -> negate (flipeval d)) a))
)

}
rtreefold bound

(\ g -> g)
(\ j k l ->
(\ m ->
(if b == m then m else k b m)
where b = negate (j (negate m) a)

)
where a = negate l
)
(\ n o -> n)

B.3 Steep sequences

Theory file

{- steep.eq -}

faststeep: faststeep x = split steep sum (foldr (:) [] x);

steep0: steep [] = True;
steep1: steep (a:x) = a > sum x && steep x;

sum0: sum [] = 0;
sum1: sum (a:x) = a + sum x;

tupling: split f g (foldr step e x) =
foldr (\ a -> uncurry (h a)) c x,

if {\ a x -> split f g (step a x) =
\ a x -> h a (f x) (g x);

split f g e = c};

split: split f g x = (f x, g x)

189

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

Derivation

faststeep
= { faststeep }

(\ a -> split steep sum (foldr (:) [] a))
= { tupling

(\ a b -> split steep sum (a : b))
= { split }

(\ a b ->
(steep c, sum c)
where c = a : b
)

= { steep1 }
(\ a b -> (a > sum b && steep b, sum (a : b)))

= { sum1 }
(\ a b ->
(a > c && steep b, a + c)
where c = sum b
)

split steep sum []
= { split }

(steep [], sum [])
= { steep0 }

(True, sum [])
= { sum0 }

(True, 0)
}
foldr (\ b -> uncurry (\ d e -> (b > e && d, b + e)))

(True, 0)

B.4 Path sequence problem

B.4.1 Initial calculations with llp

Theory file

{- llp0.eq -}

llp: llp xs = listmax (map length (filter path (subs xs)));

190

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

map0: map f [] = [];
map1: map f (x:xs) = f x : map f xs;

filter0: filter p [] = [];
filter1: filter p (x:xs) = if p x then x:filter p xs

else filter p xs;

subs0: subs []=[[]];
subs1: subs (x:xs) = subs xs ++ map (\ys -> x:ys) (subs xs);

path0: path [] = True;
path1: path [x] = True;
path2: path (x:y:xs) = arc x y && path (y:xs);

length0: length []=0;
length1: length (x:xs) = 1+length xs;

listmax0: max x (listmax []) = x;
listmax1: listmax (x:xs) = max x (listmax xs);

compose: (f.g) x = f (g x);

filtercat: filter p (xs++ys) = filter p xs ++ filter p ys;
iftrue: if True then x else y = x;
filtermap: filter p (map f xs) = map f (filter (p.f) xs);
mapcat: map f (xs++ys) = map f xs ++ map f ys;
listmaxcat: listmax (xs++ys) = max (listmax xs) (listmax ys);
mapmap: map f (map g xs) = map (f.g) xs;
listmaxplusone: listmax (map (\x -> 1 + f x) xs)

= 1+listmax (map f xs)

Derivation for empty list

llp []
= { llp }

listmax (map length (filter path (subs [])))
= { subs0 }

listmax (map length (filter path ([] : [])))
= { filter1 }

listmax (map length (if path [] then [] : a else a))
where a = filter path []

= { filter0 }

191

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

listmax (map length
(if path [] then [] : filter path [] else []))

= { filter0 }
listmax (map length (if path [] then [] : [] else []))

= { path0 }
listmax (map length (if True then [] : [] else []))

= { iftrue }
listmax (map length ([] : []))

= { map1 }
listmax (length [] : map length [])

= { map0 }
listmax (length [] : [])

= { length0 }
listmax (0 : [])

= { listmax1 }
max 0 (listmax [])

= { listmax0 }
0

Derivation for non-empty list

(\ a b -> llp (a : b))
= { llp }

(\ a b -> listmax (map length (filter path (subs (a : b)))))
= { subs1 }

(\ a b ->
listmax (map length (filter path (c ++ map ((:) a) c)))
where c = subs b

)
= { filtercat }

(\ a b ->
listmax (map length

(filter path c ++ filter path (map ((:) a) c)))
where c = subs b

)
= { filtermap }

(\ a b ->
listmax (map length (filter path c

++
map ((:) a) (filter (path . (:) a) c)))

where c = subs b
)

192

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

= { compose }
(\ a b ->
listmax (map length (filter path c

++
map ((:) a)

(filter (\ f -> path (a : f)) c)))
where c = subs b

)
= { mapcat }

(\ a b ->
listmax (map length (filter path c)

++
map length (map ((:) a)

(filter (\ g -> path (a : g)) c)))
where c = subs b

)
= { listmaxcat }

(\ a b ->
max (listmax (map length (filter path c)))

(listmax (map length
(map ((:) a)

(filter (\ g -> path (a : g)) c))))
where c = subs b

)
= { mapmap }

(\ a b ->
max (listmax (map length (filter path c)))

(listmax (map (length . (:) a)
(filter (\ h -> path (a : h)) c)))

where c = subs b
)

= { compose }
(\ a b ->
max (listmax (map length (filter path c)))

(listmax (map (\ e -> length (a : e))
(filter (\ f -> path (a : f)) c)))

where c = subs b
)

= { length1 }
(\ a b ->
max (listmax (map length (filter path c)))

(listmax (map (\ e -> 1 + length e)
(filter (\ f -> path (a : f)) c)))

193

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

where c = subs b
)

= { listmaxplusone }
(\ a b ->
max (listmax (map length (filter path c)))

(1 + listmax (map length
(filter (\ f -> path (a : f)) c)))

where c = subs b
)

B.4.2 Calculation of fastllp

Theory file

{- llp1.eq -}

fastllp: fastllp xs = split llp (\xs x -> llp’ x xs)
(foldr (:) [] xs);

llp: llp xs = listmax (map length (filter path (subs xs)));

llp’: llp’ x xs = listmax (map length (filter (\ys -> path (x:ys))
(subs xs)));

map0: map f [] = [];
map1: map f (x:xs) = f x : map f xs;

filter0: filter p [] = [];
filter1: filter p (x:xs) = if p x then x:filter p xs

else filter p xs;

subs0: subs []=[[]];
subs1: subs (x:xs) = subs xs ++ map (\ys -> x:ys) (subs xs);

path0: path [] = True;
path1: path [x] = True;
path2: path (x:y:xs) = arc x y && path (y:xs);

length0: length []=0;
length1: length (x:xs) = 1+length xs;

listmax0: max x (listmax []) = x;

194

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

listmax1: listmax (x:xs) = max x (listmax xs);

compose: (f.g) x = f (g x);

filtercat: filter p (xs++ys) = filter p xs ++ filter p ys;
iftrue: if True then x else y = x;
filtermap: filter p (map f xs) = map f (filter (p.f) xs);
mapcat: map f (xs++ys) = map f xs ++ map f ys;
listmaxcat: listmax (xs++ys) = max (listmax xs) (listmax ys);
filterand: filter (\x -> p x && q x) xs = filter p (filter q xs);
filterconst: filter (\x -> c) xs = if c then xs else [];
funcif: f (if c then x else y) = if c then f x else f y;
mapmap: map f (map g xs) = map (f.g) xs;
listmaxplusone: listmax (map (\x -> 1 + f x) xs)

= 1+listmax (map f xs);

tupling: split f g (foldr step e x) =
foldr (\ a -> uncurry (h a)) c x,

if {\ a x -> split f g (step a x) =
\ a x -> h a (f x) (g x);

split f g e = c};

split: split f g x = (f x, g x)

Derivation

fastllp
= { fastllp }

(\ a -> split llp (\ c d -> llp’ d c) (foldr (:) [] a))
= { llp }

(\ a ->
split (\ b -> listmax (map length (filter path (subs b))))

(\ e f -> llp’ f e)
(foldr (:) [] a)

)
= { llp’ }

(\ a ->
split (\ b -> listmax (map length (filter path (subs b))))

(\ e f ->
listmax (map length (filter (\ h -> path (f : h))

(subs e)))
)

195

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

(foldr (:) [] a)
)

= { tupling

(\ a b ->
split (\ c -> listmax (map length (filter path (subs c))))

(\ f g ->
listmax (map length (filter (\ i -> path (g : i))

(subs f)))
)
(a : b)

)
= { split }

(\ a b ->
(listmax (map length (filter path c))
, (\ e ->

listmax (map length (filter (\ g -> path (e : g)) c))
)

)
where c = subs (a : b)
)

= { subs1 }
(\ a b ->
(listmax (map length (filter path (subs (a : b))))
, (\ e ->

listmax (map length (filter (\ g -> path (e : g))
(c ++ map ((:) a) c)))

)
)
where c = subs b
)

= { subs1 }
(\ a b ->
(listmax (map length (filter path d))
, (\ f ->

listmax (map length (filter (\ h -> path (f : h)) d))
)

)
where {

c = subs b;
d = c ++ map ((:) a) c
}

)

196

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

= { filtercat }
(\ a b ->
(listmax (map length (filter path (c ++ d)))
, (\ f ->

listmax (map length (filter (\ h -> path (f : h)) c
++
filter (\ i -> path (f : i)) d))

)
)
where {

c = subs b;
d = map ((:) a) c
}

)
= { filtercat }

(\ a b ->
(listmax (map length (filter path c ++ filter path d))
, (\ g ->

listmax (map length (filter (\ i -> path (g : i)) c
++
filter (\ j -> path (g : j)) d))

)
)
where {

c = subs b;
d = map ((:) a) c
}

)
= { filtermap }

(\ a b ->
(listmax (map length (filter path c

++
filter path (map ((:) a) c)))

, (\ g ->
listmax (map length

(filter (\ i -> path (g : i)) c
++
map ((:) a)

(filter ((\ l -> path (g : l))
.
(:) a)
c)))

)

197

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

)
where c = subs b
)

= { compose }
(\ a b ->
(listmax (map length (filter path c

++
filter path (map ((:) a) c)))

, (\ g ->
listmax (map length

(filter (\ i -> path (g : i)) c
++
map ((:) a)

(filter (\ k -> path (g : (a : k)))
c)))

)
)
where c = subs b
)

= { path2 }
(\ a b ->
(listmax (map length (filter path c

++
filter path (map ((:) a) c)))

, (\ g ->
listmax (map length

(filter (\ i -> path (g : i)) c
++
map ((:) a)

(filter (\ k ->
arc g a && path (a : k)
)
c)))

)
)
where c = subs b
)

= { filtermap }
(\ a b ->
(listmax (map length (filter path c

++
map ((:) a)

(filter (path . (:) a) c)))

198

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

, (\ i ->
listmax (map length

(filter (\ k -> path (i : k)) c
++
map ((:) a)

(filter (\ m ->
arc i a && path (a : m)
)
c)))

)
)
where c = subs b
)

= { compose }
(\ a b ->
(listmax (map length

(filter path c
++
map ((:) a)

(filter (\ f -> path (a : f)) c)))
, (\ g ->

listmax (map length
(filter (\ i -> path (g : i)) c
++
map ((:) a)

(filter (\ k ->
arc g a && path (a : k)
)
c)))

)
)
where c = subs b
)

= { mapcat }
(\ a b ->
(listmax (map length

(filter path c
++
map ((:) a)

(filter (\ f -> path (a : f)) c)))
, (\ g ->

listmax (map length (filter (\ i -> path (g : i)) c)
++

199

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

map length
(map ((:) a)

(filter (\ l ->
arc g a && path (a : l)
)
c)))

)
)
where c = subs b
)

= { mapcat }
(\ a b ->
(listmax (map length (filter path c)

++
map length

(map ((:) a)
(filter (\ g -> path (a : g)) c)))

, (\ h ->
listmax (map length (filter (\ j -> path (h : j)) c)

++
map length

(map ((:) a)
(filter (\ m ->

arc h a && path (a : m)
)
c)))

)
)
where c = subs b
)

= { listmaxcat }
(\ a b ->
(listmax (map length (filter path c)

++
map length

(map ((:) a)
(filter (\ g -> path (a : g)) c)))

, (\ h ->
max (listmax (map length

(filter (\ j -> path (h : j)) c)))
(listmax (map length (map ((:) a)

(filter (\ m ->
arc h a

200

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

&&
path (a : m)
)
c))))

)
)
where c = subs b
)

= { listmaxcat }
(\ a b ->
(max (listmax (map length (filter path c)))

(listmax (map length
(map ((:) a)

(filter (\ g -> path (a : g))
c))))

, (\ h ->
max (listmax (map length

(filter (\ j -> path (h : j)) c)))
(listmax (map length (map ((:) a)

(filter (\ m ->
arc h a
&&
path (a : m)
)
c))))

)
)
where c = subs b
)

= { filterand }
(\ a b ->
(max (listmax (map length (filter path c)))

(listmax (map length (map ((:) a) d)))
, (\ h ->

max (listmax (map length
(filter (\ j -> path (h : j)) c)))

(listmax (map length
(map ((:) a)

(filter (\ m -> arc h a) d))))
)

)
where {

c = subs b;

201

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

d = filter (\ g -> path (a : g)) c
}

)
= { filterconst }

(\ a b ->
(max (listmax (map length (filter path c)))

(listmax (map length (map ((:) a) d)))
, (\ h ->

max (listmax (map length
(filter (\ j -> path (h : j)) c)))

(listmax (map length
(map ((:) a)

(if arc h a then d else []))))
)

)
where {

c = subs b;
d = filter (\ g -> path (a : g)) c
}

)
= { funcif }

(\ a b ->
(max (listmax (map length (filter path c))) d
, (\ h ->

(if arc h a
then max e d
else max e (listmax (map length (map ((:) a) [])))
)
where e = listmax (map length

(filter (\ j -> path (h : j))
c))

)
)
where {

c = subs b;
d = listmax (map length

(map ((:) a)
(filter (\ g -> path (a : g))

c)))
}

)
= { map0 }

(\ a b ->

202

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

(max (listmax (map length (filter path c))) d
, (\ h ->

(if arc h a then max e d
else max e (listmax (map length []))

)
where e = listmax (map length

(filter (\ j -> path (h : j))
c))

)
)
where {

c = subs b;
d = listmax (map length

(map ((:) a)
(filter (\ g -> path (a : g))

c)))
}

)
= { map0 }

(\ a b ->
(max (listmax (map length (filter path c))) d
, (\ h ->

(if arc h a then max e d else max e (listmax []))
where e = listmax (map length

(filter (\ j -> path (h : j))
c))

)
)
where {

c = subs b;
d = listmax (map length

(map ((:) a)
(filter (\ g -> path (a : g))

c)))
}

)
= { listmax0 }

(\ a b ->
(max (listmax (map length (filter path c))) d
, (\ h ->

(if arc h a then max e d else e)
where e = listmax (map length

(filter (\ j -> path (h : j))

203

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

c))
)

)
where {

c = subs b;
d = listmax (map length

(map ((:) a)
(filter (\ g -> path (a : g))

c)))
}

)
= { mapmap }

(\ a b ->
(max (listmax (map length (filter path c)))

(listmax (map length (map ((:) a) d)))
, (\ h ->

(if arc h a
then max e (listmax (map (length . (:) a) d))
else e
)
where e = listmax (map length

(filter (\ j -> path (h : j))
c))

)
)
where {

c = subs b;
d = filter (\ g -> path (a : g)) c
}

)
= { compose }

(\ a b ->
(max (listmax (map length (filter path c)))

(listmax (map length (map ((:) a) d)))
, (\ h ->

(if arc h a
then max e (listmax (map (\ k -> length (a : k)) d))
else e
)
where e = listmax (map length

(filter (\ j -> path (h : j))
c))

)

204

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

)
where {

c = subs b;
d = filter (\ g -> path (a : g)) c
}

)
= { length1 }

(\ a b ->
(max (listmax (map length (filter path c)))

(listmax (map length (map ((:) a) d)))
, (\ h ->

(if arc h a
then max e (listmax (map (\ k -> 1 + length k) d))
else e
)
where e = listmax (map length

(filter (\ j -> path (h : j))
c))

)
)
where {

c = subs b;
d = filter (\ g -> path (a : g)) c
}

)
= { mapmap }

(\ a b ->
(max (listmax (map length (filter path c)))

(listmax (map (length . (:) a) d))
, (\ i ->

(if arc i a
then max e (listmax (map (\ l -> 1 + length l) d))
else e
)
where e = listmax (map length

(filter (\ k -> path (i : k))
c))

)
)
where {

c = subs b;
d = filter (\ h -> path (a : h)) c
}

205

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

)
= { compose }

(\ a b ->
(max (listmax (map length (filter path c)))

(listmax (map (\ e -> length (a : e)) d))
, (\ g ->

(if arc g a
then max h (listmax (map (\ j -> 1 + length j) d))
else h
)
where h = listmax (map length

(filter (\ i -> path (g : i))
c))

)
)
where {

c = subs b;
d = filter (\ f -> path (a : f)) c
}

)
= { length1 }

(\ a b ->
(max (listmax (map length (filter path c))) d
, (\ g ->

(if arc g a then max h d else h)
where h = listmax (map length

(filter (\ i -> path (g : i))
c))

)
)
where {

c = subs b;
d = listmax (map (\ e -> 1 + length e)

(filter (\ f -> path (a : f)) c))
}

)
= { listmaxplusone }

(\ a b ->
(max (listmax (map length (filter path c)))

(listmax (map (\ e -> 1 + length e) d))
, (\ g ->

(if arc g a then max h (1 + listmax (map length d))
else h

206

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

)
where h = listmax (map length

(filter (\ i -> path (g : i))
c))

)
)
where {

c = subs b;
d = filter (\ f -> path (a : f)) c
}

)
= { listmaxplusone }

(\ a b ->
(max (listmax (map length (filter path c))) d
, (\ g ->

(if arc g a then max e d else e)
where e = listmax (map length

(filter (\ i -> path (g : i))
c))

)
)
where {

c = subs b;
d = 1 + listmax (map length

(filter (\ f -> path (a : f))
c))

}
)

split (\ a -> listmax (map length (filter path (subs a))))
(\ d e ->
listmax (map length (filter (\ g -> path (e : g))

(subs d)))
)
[]

= { split }
(listmax (map length (filter path a))
, (\ c ->

listmax (map length (filter (\ e -> path (c : e)) a))
)

)
where a = subs []

= { subs0 }

207

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

(listmax (map length (filter path (subs [])))
, (\ c ->

listmax (map length (filter (\ e -> path (c : e))
([] : [])))

)
)

= { filter1 }
(listmax (map length (filter path (subs [])))
, (\ c ->

listmax (map length
(if path (c : []) then [] : a else a))

where a = filter (\ e -> path (c : e)) []
)

)
= { filter0 }

(listmax (map length (filter path (subs [])))
, (\ c ->

listmax (map length
(if path (c : [])
then [] : filter (\ e -> path (c : e))

[]
else []
))

)
)

= { filter0 }
(listmax (map length (filter path (subs [])))
, (\ c ->

listmax (map length
(if path (c : []) then [] : [] else []))

)
)

= { subs0 }
(listmax (map length (filter path a))
, (\ c ->

listmax (map length (if path (c : []) then a else []))
)

)
where a = [] : []

= { filter1 }
(listmax (map length (if path [] then [] : a else a))
, (\ d ->

listmax (map length

208

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

(if path (d : []) then [] : [] else []))
)

)
where a = filter path []

= { filter0 }
(listmax (map length (if path [] then [] : filter path []

else []
))

, (\ c ->
listmax (map length

(if path (c : []) then [] : [] else []))
)

)
= { filter0 }

(listmax (map length (if path [] then a else []))
, (\ b ->

listmax (map length (if path (b : []) then a else []))
)

)
where a = [] : []

= { path0 }
(listmax (map length (if True then a else []))
, (\ b ->

listmax (map length (if path (b : []) then a else []))
)

)
where a = [] : []

= { path1 }
(a, (\ b -> a))
where a = listmax (map length

(if True then [] : [] else []))
= { iftrue }

(listmax (map length (if True then a else []))
, (\ b -> listmax (map length a))
)
where a = [] : []

= { map1 }
(listmax (map length (if True then [] : [] else []))
, (\ b -> listmax (length [] : map length []))
)

= { map0 }
(listmax (map length (if True then [] : [] else []))
, (\ b -> listmax (length [] : []))

209

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

)
= { length0 }

(listmax (map length (if True then [] : [] else []))
, (\ b -> listmax (0 : []))
)

= { listmax1 }
(listmax (map length (if True then [] : [] else []))
, (\ b -> max 0 (listmax []))
)

= { listmax0 }
(listmax (map length (if True then [] : [] else []))
, (\ b -> 0)
)

= { iftrue }
(listmax (map length ([] : [])), (\ b -> 0))

= { map1 }
(listmax (length [] : map length []), (\ b -> 0))

= { map0 }
(listmax (length [] : []), (\ a -> 0))

= { length0 }
(listmax (0 : []), (\ a -> 0))

= { listmax1 }
(max 0 (listmax []), (\ a -> 0))

= { listmax0 }
(0, (\ a -> 0))

}
foldr (\ b ->

uncurry (\ d e ->
(max d a
, (\ f ->

(if arc f b then max c a else c)
where c = e f
)

)
where a = 1 + e b
)

)
(0, (\ g -> 0))

210

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

B.4.3 Calculation of llp ′′

Theory file

{- llp2.eq -}

fastllp’’: fastllp’’ xs ts = llp’’ ts (foldr (:) [] xs);

llp’’: llp’’ ts xs
= max (llp xs) (listmax

(map (\kx -> fst kx + llp’ (snd kx) xs) ts));

llp0: llp [] = 0;
llp1: llp (x:xs) = max (llp xs) (1+llp’ x xs);

llp’0: llp’ x [] = 0;
llp’1: llp’ x (y:ys) = if arc x y

then max (llp’ x ys) (1+ llp’ y ys)
else llp’ x ys;

{-
map0: map f [] = [];
map1: map f (x:xs) = f x : map f xs;
-}

listmax0: listmax [] = neginf;
listmax1: listmax (x:xs) = max x (listmax xs);

ifmax: if c then max a b else a
= max a (if c then b else listmax []);

plusmax: n + max x y = max (n+x) (n+y);
listmaxmax: listmax (map (\x -> max (f x) (g x)) xs)

= max (listmax (map f xs))
(listmax (map g xs));

maxassoc: max (max a b) c = max a (max b c);
maxplus: max n (x+n) = max 0 x + n;
plusneginf: n + neginf = neginf;
listmaxmapconst: listmax (map (\x -> a) xs) = a;
maxneginf: max x neginf = x;
pluszero: n + 0 = n;
maxlistmax: max (listmax (map f xs)) (f x)

= listmax (map f (x:xs));
maxmapif: listmax (map (\x -> f x (if g x then v else w)) xs)

= max (listmax (map (\x -> f x v) (filter g xs)))

211

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

(listmax (map (\x -> f x w)
(filter (\x -> not (g x)) xs)));

maxmapplus: listmax (map (\x -> f x + y) xs)
= listmax (map f xs) + y;

maxcom: max b (max c (listmax (map f xs)+b))
= max c (max b (listmax (map f xs)+b));

plusllp: v+(1+llp’ y ys)
= (\kx -> fst kx + llp’ (snd kx) ys) (1+v,y);

promotion: \xs -> f (foldr step e xs) = \xs -> foldr g c xs,
if {f e = c;

\ a y -> f (step a y) = \ a y -> g a (f y)}

Derivation

fastllp’’
= { fastllp’’ }

(\ a b -> llp’’ b (foldr (:) [] a))
= { llp’’ }

(\ a ->
(\ b ->
max (llp c) (listmax (map (\ e -> fst e + llp’ (snd e) c) b))
)
where c = foldr (:) [] a

)
= { promotion

(\ a ->
max (llp [])

(listmax (map (\ b -> fst b + llp’ (snd b) []) a))
)

= { llp0 }
(\ a ->
max 0 (listmax (map (\ b -> fst b + llp’ (snd b) []) a))
)

= { llp’0 }
(\ a -> max 0 (listmax (map (\ b -> fst b + 0) a)))

= { pluszero }

212

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

(\ a -> max 0 (listmax (map fst a)))

(\ a b ->
(\ c ->
max (llp e)

(listmax (map (\ d -> fst d + llp’ (snd d) e) c))
)
where e = a : b
)

= { llp1 }
(\ a b c ->
max (max (llp b) (1 + llp’ a b))

(listmax (map (\ d -> fst d + llp’ (snd d) (a : b))
c))

)
= { llp’1 }

(\ a b ->
(\ c ->
max (max (llp b) e)

(listmax (map (\ d ->
fst d
+
(if arc f a then max g e else g)
where {

f = snd d;
g = llp’ f b
}

)
c))

)
where e = 1 + llp’ a b
)

= { ifmax }
(\ a b ->
(\ c ->
max (max (llp b) e)

(listmax (map (\ d ->
fst d
+
max (llp’ f b)

(if arc f a then e else listmax [])
where f = snd d
)

213

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

c))
)
where e = 1 + llp’ a b
)

= { listmax0 }
(\ a b ->
(\ c ->
max (max (llp b) e)

(listmax (map (\ d ->
fst d
+
max (llp’ f b)

(if arc f a then e else neginf)
where f = snd d
)
c))

)
where e = 1 + llp’ a b
)

= { plusmax }
(\ a b ->
(\ c ->
max (max (llp b) e)

(listmax (map (\ d ->
max (g + llp’ f b)

(g + (if arc f a then e
else neginf

))
where {

f = snd d;
g = fst d
}

)
c))

)
where e = 1 + llp’ a b
)

= { listmaxmax }
(\ a b ->
(\ c ->
max (max (llp b) f)

(max (listmax (map (\ d -> fst d + llp’ (snd d) b) c))
(listmax (map (\ e ->

214

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

fst e + (if arc (snd e) a
then f
else neginf
)

)
c)))

)
where f = 1 + llp’ a b
)

= { maxassoc }
(\ a b ->
(\ c ->
max (llp b)

(max f (max (listmax (map (\ d ->
fst d + llp’ (snd d) b
)
c))

(listmax (map (\ e ->
fst e + (if arc (snd e) a

then f
else neginf
)

)
c))))

)
where f = 1 + llp’ a b
)

= { maxmapif }
(\ a b ->
(\ c ->
max (llp b)

(max i
(max (listmax (map (\ d ->

fst d + llp’ (snd d) b
)
c))

(max (listmax (map (\ e -> fst e + i)
(filter (\ f ->

arc (snd f) a
)
c)))

(listmax (map (\ g -> fst g + neginf)
(filter (\ h ->

215

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

not (arc (snd h)
a)

)
c))))))

)
where i = 1 + llp’ a b
)

= { plusneginf }
(\ a b ->
(\ c ->
max (llp b)

(max i
(max (listmax (map (\ d ->

fst d + llp’ (snd d) b
)
c))

(max (listmax (map (\ e -> fst e + i)
(filter (\ f ->

arc (snd f) a
)
c)))

(listmax (map (\ g -> neginf)
(filter (\ h ->

not (arc (snd h)
a)

)
c))))))

)
where i = 1 + llp’ a b
)

= { listmaxmapconst }
(\ a b ->
(\ c ->
max (llp b)

(max g (max (listmax (map (\ d ->
fst d + llp’ (snd d) b
)
c))

(max (listmax (map (\ e -> fst e + g)
(filter (\ f ->

arc (snd f) a
)
c)))

216

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

neginf)))
)
where g = 1 + llp’ a b
)

= { maxneginf }
(\ a b ->
(\ c ->
max (llp b)

(max g
(max (listmax (map (\ d ->

fst d + llp’ (snd d) b
)
c))

(listmax (map (\ e -> fst e + g)
(filter (\ f -> arc (snd f) a)

c)))))
)
where g = 1 + llp’ a b
)

= { maxmapplus }
(\ a b ->
(\ c ->
max (llp b)

(max e (max (listmax (map (\ d ->
fst d + llp’ (snd d) b
)
c))

(listmax (map fst (filter (\ f ->
arc (snd f) a
)
c))

+
e)))

)
where e = 1 + llp’ a b
)

= { maxcom }
(\ a b ->
(\ c ->
max (llp b)

(max (listmax (map (\ d -> fst d + llp’ (snd d) b) c))
(max e (listmax (map fst (filter (\ f ->

arc (snd f) a

217

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

)
c))

+
e)))

)
where e = 1 + llp’ a b
)

= { maxplus }
(\ a b c ->
max (llp b)

(max (listmax (map (\ d -> fst d + llp’ (snd d) b) c))
(max 0 (listmax (map fst (filter (\ f ->

arc (snd f) a
)
c)))

+
(1 + llp’ a b)))

)
= { plusllp }

(\ a b c ->
max (llp b)

(max (listmax (map (\ d -> fst d + llp’ (snd d) b) c))
(fst e + llp’ (snd e) b))

where e = (1 + max 0 (listmax (map fst
(filter (\ f ->

arc (snd f) a
)
c)))

, a
)

)
= { plusmax }

(\ a b c ->
max (llp b)

(max (listmax (map (\ d -> fst d + llp’ (snd d) b) c))
(fst (1 + max 0 e, a)
+
llp’ (snd (max (1 + 0) (1 + e), a)) b))

where e = listmax (map fst (filter (\ f -> arc (snd f) a)
c))

)
= { plusmax }

(\ a b c ->

218

APPENDIX B. B.4. PATH SEQUENCE PROBLEM

max (llp b)
(max (listmax (map (\ d -> fst d + llp’ (snd d) b) c))

(fst g + llp’ (snd g) b))
where g = (max e (1 + listmax (map fst

(filter (\ f ->
arc (snd f) a

)
c)))

, a
)

)
where e = 1 + 0

= { pluszero }
(\ a b c ->
max (llp b)

(max (listmax (map (\ d -> fst d + llp’ (snd d) b) c))
(fst (max (1 + 0) e, a)
+
llp’ (snd (max 1 e, a)) b))

where e = 1 + listmax (map fst
(filter (\ f -> arc (snd f) a)

c))
)

= { pluszero }
(\ a b c ->
max (llp b)

(max (listmax (map (\ d -> fst d + llp’ (snd d) b) c))
(fst e + llp’ (snd e) b))

where e = (max 1 (1 + listmax (map fst
(filter (\ f ->

arc (snd f) a
)
c)))

, a
)

)
= { maxlistmax }

(\ a b c ->
max (llp b)

(listmax (map (\ d -> fst d + llp’ (snd d) b)
((max 1

(1
+

219

APPENDIX B. B.5. OPTIMISING ABSTRACTS

listmax (map fst
(filter (\ f ->

arc (snd f)
a

)
c)))

, a
)
:
c)))

)
}
foldr (\ c d e ->

d ((max 1 (1 + listmax (map fst (filter (\ g ->
arc (snd g) c

)
e)))

, c
)
:
e)

)
(\ h -> max 0 (listmax (map fst h)))

B.5 Optimising abstracts

Theory file

abstracts: abstracts x e t
= concat (takeWhile (not.null)

(map (\n -> abstractssub n x e t) (from 0)));

abstractssub0: abstractssub 0 x e t = [t];
abstractssub1: abstractssub (n+1) x e t

= nub (concat (map (abstract x e)
(abstractssub n x e t)));

from: from m = iterate (\n->n+1) m;

concat0: concat [] = [];
concat1: concat (xs:xss) = xs ++ concat xss;

220

APPENDIX B. B.5. OPTIMISING ABSTRACTS

compose: (f.g) x = f (g x);

takeWhile0: takeWhile p [] = [];
takeWhile1: takeWhile p (x:xs)

= if p x then x:takeWhile p xs else [];

ifnot: if not b then x else y = if b then y else x;
funcif: f (if b then x else y) = if b then f x else f y;

mapiterate: map g (iterate f x) = iterate h y,
if { g x = y;

\a -> g (f a) = \a -> h (g a) };

iterate: iterate f = fix (\g x -> x:g (f x));

fixpointfusion: func (fix rec x) = fix rec’ x,
if { \f -> func.(rec f) = \f -> rec’ (func.f) }

Derivation

abstracts
= { abstracts }

(\ a b c ->
concat (takeWhile (not . null)

(map (\ g -> abstractssub g a b c)
(from 0)))

)
= { from }

(\ a b c ->
concat (takeWhile (not . null)

(map (\ g -> abstractssub g a b c)
(iterate (\ h -> h + 1) 0)))

)
= { compose }

(\ a b c ->
concat (takeWhile (\ d -> not (null d))

(map (\ e -> abstractssub e a b c)
(iterate (\ f -> f + 1) 0)))

)
= { mapiterate

221

APPENDIX B. B.5. OPTIMISING ABSTRACTS

abstractssub 0 ef eg eh
= { abstractssub0 }

eh : []

(\ a -> abstractssub (a + 1) ef eg eh)
= { abstractssub1 }

(\ a ->
nub (concat (map (abstract ef eg)

(abstractssub a ef eg eh)))
)

}
(\ a b c ->
concat (takeWhile (\ d -> not (null d))

(iterate (\ e ->
nub (concat (map (abstract a b)

e))
)
(c : [])))

)
= { iterate }

(\ a b c ->
concat (takeWhile (\ d -> not (null d))

(fix (\ e f ->
f : e (nub (concat (map (abstract a

b)
f)))

)
(c : [])))

)
= { fixpointfusion

(\ a ->
(\ c -> concat (takeWhile (\ d -> not (null d)) c))
.
(\ e -> e : a (nub (concat (map (abstract ef eg) e))))
)

= { compose }
(\ a b ->
concat (takeWhile (\ c -> not (null c))

(b : a (nub (concat (map (abstract ef
eg)

b)))))

222

APPENDIX B. B.5. OPTIMISING ABSTRACTS

)
= { takeWhile1 }

(\ a b ->
concat (if not (null b)

then b
:
takeWhile (\ c -> not (null c))

(a (nub (concat (map (abstract ef
eg)

b))))
else []
)

)
= { ifnot }

(\ a b ->
concat (if null b

then []
else b

:
takeWhile (\ c -> not (null c))

(a (nub (concat (map (abstract ef
eg)

b))))
)

)
= { funcif }

(\ a b ->
if null b
then concat []
else concat (b

:
takeWhile (\ c -> not (null c))

(a (nub (concat (map (abstract ef
eg)

b)))))

)
= { concat0 }

(\ a b ->
if null b
then []
else concat (b

:

223

APPENDIX B. B.5. OPTIMISING ABSTRACTS

takeWhile (\ c -> not (null c))
(a (nub (concat (map (abstract ef

eg)
b)))))

)
= { concat1 }

(\ a b ->
if null b
then []
else b

++
concat (takeWhile (\ c -> not (null c))

(a (nub (concat (map (abstract ef
eg)

b)))))

)

(\ a ->
aq ((\ d -> concat (takeWhile (\ e -> not (null e)) d))

.
a)

)
= { compose }

(\ a ->
aq (\ c -> concat (takeWhile (\ d -> not (null d)) (a c)))
)

}
(\ a b c ->
fix (\ d e ->

if null e
then []
else e ++ d (nub (concat (map (abstract a b) e)))

)
(c : [])

)

224

	Introduction
	Motivation
	Promotion
	Mechanisation

	Fusion
	Deforestation
	Short-cut deforestation

	Preliminaries
	The matching problem
	Notation
	Expressions
	Subexpressions
	Substitutions
	Meta-programs
	Rules

	Specification
	Beta-reduction
	Matches
	Match sets

	Implementation
	Specification of resolve
	Implementing resolve

	Proof of correctness
	Correctness of matches
	Correctness of resolve
	Simplifying the proof obligation
	Matching local variables
	Matching constants
	Matching against a pattern variable
	Matching -abstractions
	Matching against a -abstraction
	Failure to match
	Matching against an application

	Example : Simple matching

	One-step matching
	Specification
	Example : fast reverse

	Algorithm
	Defining apps

	Proof of correctness
	Correctness of apps

	Related work : Second-order matching
	Notation
	Algorithm
	Example
	Discussion

	Two-step matching
	Specification
	Example : mindepth

	Algorithm
	Defining abstracts

	Proof of correctness
	Correctness of abstracts
	Claim about abstract

	Related work : Third-order matching
	Tree automata
	Generating the interpolation equations

	Solving interpolation equations
	Combining results
	Example
	Discussion

	Practical implementation of matching
	Example session with MAG
	Implementation
	Preliminaries
	Framework
	Simple matching
	One-step matching
	Two-step matching

	Efficiency
	Viability test
	Checking flexibility
	Other optimisations
	Performance tests

	Examples
	Minimum depth
	Alpha-beta pruning
	Steep sequences
	The path sequence problem
	Optimising abstracts

	Discussion
	MAG
	Variations on our algorithms
	Implementation of matching
	Other applications

	Bibliography
	Index
	Quick reference
	Definitions and notation
	Specification
	Beta-reduction
	Matching
	resolve
	appresolve

	Implementation
	matches
	resolve
	appresolve+.1667emnone
	appresolve+.1667emonce
	appresolve+.1667emtwice

	MAG derivations
	Minimum depth
	Alpha-beta pruning
	Steep sequences
	Path sequence problem
	Initial calculations with llp
	Calculation of fastllp
	Calculation of llp''

	Optimising abstracts

