
THE SAMGRID MONITORING SERVICE AND ITS INTEGRATION WITH
MONALISA

A. Lyon, P. Vokac, M. Zimmler, A. Baranovski, G. Garzoglio, L. Loebel-Carpenter, R. Herber, R.
Illingworth, R. Kennedy, A. Kreymer, A. Kumar, L. Lueking, W. Merritt, I. Terekhov, J. Trumbo,

S. White, S. Veseli, FNAL, Batavia, IL 60510, USA, M. Burgon-Lyon, R. StDenis, Glasgow
University, S. Belforte, INFN, Trieste, U. Kerzel, Karlsruhe University, M. Leslie, V. Bartsch, S.

Stonjek, Oxford University, F. Ratnikov, Rutgers University, A.Sill, Texas Tech University

Abstract

The SAMGrid team is in the process of implementing a
monitoring and information service, which fulfils several
important roles in the operation of the SAMGrid system,
and will replace the first generation of monitoring tools in
the current deployments. The first generation tools are in
general based on text log-files and represent solutions
which are not scalable or maintainable. The roles of the
monitoring and information service are: 1) providing
diagnostics for troubleshooting the operation of SAMGrid
services; 2) providing support for monitoring at the level
of user jobs; 3) providing runtime support for local
configuration and other information which currently must
be stored centrally (thus moving the system toward
greater autonomy for the SAMGrid station services,
which include cache management and job management
services); 4) providing intelligent collection of statistics in
order to enable performance monitoring and tuning. The
architecture of this service is quite flexible, permitting
input from any instrumented SAMGrid application or
service. It will allow multiple backend storage for
archiving of (possibly) filtered monitoring events, as well
as real time information displays and active notification
service for alarm conditions. This service will be able to
export, in a configurable manner, information to higher
level Grid monitoring services, such as MonALISA. We
describe our experience to date with using a prototype
version together with MonALISA.

INTRODUCTION

Overview of the Existing Monitoring and
Information Services

SAMGrid* [1] is a general data handling system

designed to work for experiments with peta-byte sized
datasets and widely distributed production and analysis
facilities. The system has relied on the centralized Oracle
RDBMS since its beginnings, not only for file metadata,
event and replica catalogues, but also for process

* The SAMGrid system offers a wide variety of services, including those
for data transfer, storage and management, as well as for process
bookkeeping on distributed systems. The system is used by D0 and
CDF, and is being tested for use by MINOS and CMS.

bookkeeping and keeping track of station† configuration
and state. Thus, to a large extent the system information
services, which are vital for its operation, have been
encapsulated within the SAMGrid CORBA-based DB
Servers.

On the other hand, for the system monitoring we have

used a wide variety of tools, such as the CORBA Naming
Service polling scripts and SAM-at-a-glance web pages,
which periodically inquire the data handling servers about
their status. The most recently written tool, called
SAMTV [2], provides graphical information and statistics
about the system performance, status of the data handling
servers and of the user projects. This tool (see Figure 1)
has proven to be invaluable for monitoring and
troubleshooting the system and diagnosing problems.

Figure 1: Snapshot of the main SAMTV [2] web page for
the D0 SAMGrid stations running at Fermilab. The

† Station denotes a particular set of hardware resources that are managed
by SAMGrid servers. End users request a set of files by submitting a
SAMGrid project to one of the SAMGrid stations. Their applications are
served input files by the project manager (one of the station servers).

summary page contains links to information for individual
stations and user projects running on those.

Recent enhancement of the SAMGrid system with the

Job and Information Management (JIM) components [3]
has also introduced new functionality for the system
monitoring and information services. Those components
use XML Xindice database [4] for configuration
information, as well as the Globus MDS software [5] for
job monitoring [6] (see Figure 2).

Figure 2: Snapshot of the JIM monitoring service [6]. The
main web page contains links to both D0 and CDF JIM
monitoring sites.

Problems with the Current Infrastructure

The existing infrastructure has lots of functionality built

in and serves the SAMGrid system well. However, it is
not without problems: centralized database and
monitoring based on the log-file parsing.

Even though the performance of the centralized DB/DB

Server has been very good so far, and will further
improve with introduction of the new DB Server software
[7], those centralized components remain as a single point
of failure in the system. Thus, the whole data handling
system is down whenever the machine hosting the central
database, or the database itself, requires maintenance.

The SAMTV scripts, as well as many of our other

tools, are based on parsing of the system text log-files. In
addition to being non-scalable, this is also a maintenance
nightmare. Parsing of the non-formatted log-files is
difficult, it often breaks with new software releases, and it
cannot be used for real-time monitoring of the data-
handling servers and user projects.

In order to address the issues discussed above, we have

started working towards improving the existing
infrastructure by introducing the new event-based

monitoring service, and distributing the centralized
information services.

EVENT-BASED MONITORING SERVICE

General Architecture

The design of the new SAMGrid monitoring service is

based on the Grid Monitoring Architecture [8], and aims
to satisfy the following set of requirements:

• Scalability
• Reliability and performance
• Non-intrusiveness
• Interoperability with other monitoring systems
• Flexibility and extendibility
• Security

Hardware

Sensors

Data Handling

Servers

Collective Grid

Services

Monitoring

Server

Database

Service

Event

Database

Broadcast

Service

User Apps

Real-time

Monitoring

Apps

Monitoring

Apps

SAMGrid Monitoring Service

Legend

Information Flow

Information Producer

Information Consumer

MIS Components

Grid

Monitoring

Event Export

Service

Forwarding

Service

Peer

Monitoring

Server

Figure 3: SAMGrid Monitoring Service Architecture.

The general architecture of the system is shown on
Figure 3. The service is based on events, which are
produced by the data handling servers and user
applications, and sent via CORBA calls‡ to the
monitoring server. Monitoring server, which can operate
in both push and pull event modes,§ processes events and
stores them into its local database backend for later
mining with tools like SAMTV. It can also forward
certain types of events to the real-time monitoring
applications and/or to its peer servers, as well as export
events into other monitoring systems.

‡ The SAMGrid system uses CORBA as its communication protocol.
§ In the push event mode, producers push event information into the
monitoring server, and in the pull event mode the monitoring server
requests producers to generate events. In the SAMGrid system the push
mode is used for irregularly occurring events, such as a file delivery to a
user application. On the other hand, the push mode is used for those
events where regularity is desired. This is the case, for example, with
events describing the station status.

Each monitoring server with its accompanying

components will be able to provide service to one or more
SAMGrid stations, which ensures that the system scales
well. Events are based on dictionaries (keyword-value
pairs), and can be stored into the local database as
dictionaries. This makes the system extremely flexible:
the existing events can be modified, and new events
added to event producers without the need for
modifications of any of the monitoring service
components. Monitoring applications can obtain from the
database the event information in the dictionary form, and
decide how to process it.

Monitoring Server Design and Features

The monitoring server is designed with performance,

robustness, and reliability in mind. It is written in Python,
multithreaded, and, as mentioned earlier, can both receive
and pull events at the same time.

The event flow inside the server is shown on Figure 4.

When a message arrives into the server, it is inserted into
the incoming event queue. In case of clients pushing
information into the server, the client call returns
immediately after message is received. In this way the
monitoring system is as non-intrusive as possible, and
should not affect the performance of the data handling
servers and user jobs that are being monitored. All
incoming messages are unpacked by the queue manager
and passed on for processing by a number of designated
message processors, such as the database processor,
broadcast service processor, event exporting processor,
etc. The list of message processors which server will be
using is configurable, so that, for example, one can
choose whether or not to export any of the monitoring
data into external (grid) monitoring systems. Each of the
configured message processors is running in its own
thread and has their own event queues. In this way, in
case one of the processors starts having problems and its
performance starts declining, the other processors will not
be affected.**

In addition to the designated message processors which

deal with all events and are provided with the monitoring
server, certain event types can also be processed by the
specialized event handlers. The event handlers are small
python modules imported by the monitoring server when
needed. These modules can be easily written or
customized for the local SAMGrid installation. For
example, one might want to send mail to the local station
administrator in case one of the station disks starts
exhibiting problems.

** For example, the speed at which events are inserted into the database
might be affected by performance of the database itself.

Figure 4: Message flow inside the SAMGrid Monitoring

Server.

Note that the monitoring server can be configured to act
as a simple event-forwarding service. This feature may be
used to spread the monitoring load over several machines.
The server performance can also be tuned by increasing
the number of threads that perform certain tasks (e.g., one
can increase the number of message processors which
insert events into the database).

Client Support Infrastructure

Our client support libraries, which exist for Python and
C++, aim to simplify the process of producing and
sending events to the monitoring service. For example, in
the case of a Python application one can add and send a
new event with only a couple of lines of code. In addition
to simplifying instrumentation of the SAMGrid (and user)
code with new monitoring events, those libraries also
contribute to the non-intrusiveness of the whole
monitoring system by detecting any possible problems in
communicating events to the monitoring service.

Note that the standard SAMGrid C++ API already has

entire event infrastructure built in, and similar work is
planned for our Python API in the near future. This will
allow direct monitoring of all user applications built on
top of those APIs.

Interoperability with Other Monitoring Systems

The SAMGrid Monitoring Service architecture allows
interoperability with external (grid) monitoring systems
via event processors that have the ability to export event
data into their corresponding external monitoring system.
Our first implementation of such event processor is
intended to work with MonALISA [9]. This processor
filters incoming SAMGrid events and extracts
information that can be stored into MonALISA, and
subsequently uses the MonALISA Python clients to
actually store the data. At present there are certain
limitations in MonALISA, which prohibit us from fully
exploiting its functionality for the SAMGrid monitoring
(e.g., MonALISA GUI can at the moment only display

numerical values). However, we are currently pursuing
collaboration with MonALISA developers with the goal
of resolving the outstanding issues in the near future.

Initial Performance Numbers

Our initial investigations into the performance of the
new system is based on the monitoring server and its
MySQL [10] database backend†† running on a dual
800MHZ Pentium III machine with 1GB of RAM. In this
configuration the server was able to handle events at a
constant rate of 45 events per second, plus additional 2-
second spike of 70 events per second (see Figure 5).
These numbers give us confidence that the new
monitoring service will be able to easily handle the load
produced by the SAMGrid system. This conclusion is
further strengthened by the fact that the monitoring server
is very configurable and that its performance can be
tuned. However, more extensive performance evaluation
and testing is still needed and will be done before the
system is put into production later this year.

0 10 2 0 30 4 0 50 6 0 70 8 0

0

5 0

100

1 5 0

200

2 5 0

300

3 5 0

400

4 5 0

500

5 5 0

600

6 5 0

Server Performance

 Q u e u e M a n a g e r

D a t a b a s e

Time (seconds)

U n p r o c e s s e d M e s s a g e Q u e u e S i z e

Figure 5: Monitoring Server performance under constant
load of 45 events per second, plus one 2-second load
spike of 70 events per second. Server needed about 80
seconds to clear the queue of messages waiting to be
inserted into the database.

PLANS FOR DISTRIBUTED
INFORMATION SERVICE

Our work on distributing the SAMGrid information

services is still in its early planning stages. The overall
system architecture will re-use many components of the
new Monitoring Service (e.g., database backends), and
will integrate many of the existing services provided by
the SAMGrid DB Server and JIM software.

The main goal of this work is to move the system

toward greater autonomy for the SAMGrid station

†† At the moment we support only the MySQL database backend.
Support for the other databases will be added in the future.

services by providing runtime support for those services
locally, as opposed to depending on the central database.
This will in turn result in a better and more robust
performance of the entire data handling system.

CONCLUSIONS

In this paper we have described the architecture, design

and implementation of the new SAMGrid Monitoring
Service, which will be deployed into production later this
year. The system is flexible and robust, can interoperate
with other monitoring systems, and our initial
investigations indicate its very good performance.

In addition to discussing the Monitoring Service, we

have also outlined plans for distributing the SAMGrid
information services.

ACKNOWLEDGEMENTS
We would like to thank Fermilab Computing Division

for its ongoing support of the SAMGrid project, and
especially the CCF, CEPA, and Run II Departments. We
would also like to thank everyone at D0 and CDF who
has contributed to this project. This project is sponsored
by DOE contract No. DE-AC02-76CH03000.

REFERENCES
[1] http://projects.fnal.gov/samgrid
[2] http://www-clued0.fnal.gov/~sam/samTV/current
[3] http://www-d0.fnal.gov/computing/grid
[4] http://xml.apache.org/xindice
[5] http://www.globus.org
[6] http://samgrid.fnal.gov:8080
[7] L. Loebel-Carpenter et al., “The SAMGrid Database

Server Component: Its Upgraded Infrastructure and
the Future Development Plan”, this conference
proceedings

[8] R. Aydt et al., “A Grid Monitoring Architecture”,
Global Grid Forum/GMA Working Group Document
GWD-GP-16-1 (http://www.didc.lbl.gov/GGF-
PERF/GMA-WG/papers/GWD-GP-16-1.pdf)

[9] http://monalisa.caltech.edu
[10] http://www.mysql.com

