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Abstract

This is an attempt to derive some properties of darcs patch theory.
We start by specifying the “axioms” that must be true of patches and
commutation, and prove some theorems.

1 Notation

A, B etc are individual patches, that can’t be expressed as a sequence of two
smaller patches. They could be either primitive patches or mergers or conflictors
or whatever. They could be inverted.

Sequential patch composition is written with juxtaposition. Not all patches
can be sequentially composed, but use of the notation AB implicitly assumes
that they can. 1

Commutation is written AB ↔ B ′A′. If 6 ∃B ′A′ s.t. AB ↔ B ′A′, then we
write AB ↔ fail.

We write As to represent a (possibly empty) sequence of patches of arbitrary
length The empty sequence is written as id.

↔↑ is a commutation between sequences of patches, defined as follows:

AB ↔ B ′A′ =⇒ AB ↔↑ B ′A′

As ↔↑ Bs =⇒ AsC ↔↑ BsC
As ↔↑ Bs =⇒ CAs ↔↑ CBs

We distinguish different derivations of As ↔↑ Bs from each other, so any
particular statement of As ↔↑ Bs has precisely one set of antecedents in the
above definition. 2

We define ↔∗, the reflexive transitive closure of ↔↑, as follows:

As ↔∗ As
As ↔↑ Bs =⇒ As ↔∗ Bs

As ↔∗ Bs ∧ Bs ↔∗ Cs =⇒ As ↔∗ Cs

1It is likely that a mechanised proof about patch theory would have to make this precon-
dition explicit.

2This is horrible. I need a better notation. But for now I just want to get this proof written
down.
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Again we distinguish different derivations.
The relation ∼ between individual patches is defined as follows.

A ∼ A
AB ↔ B ′A′ =⇒ A ∼ A′

AB ↔ B ′A′ =⇒ B ∼ B ′

A ∼ A′ ∧A′ ∼ A′′ =⇒ A ∼ A′′

We do not attempt to distinguish different derivations of ∼; it is a simple rela-
tion.

We adopt a notational convention that if we mention A and A′ together,
then A ∼ A′ (etc).3

2 Axioms

These are properties that we assume about individual patches and commutation.
They are not quite axioms, since it would be possible to prove them about any
particular implementation of patches and commutation, but for our current
purposes they are.

Associativity of patch sequencing:

(AB)C = A(BC )

Since this property is required, we can omit parentheses (and it does make
sense to talk about lists).

Uniqueness of commutation:

AB ↔ B ′A ∧AB ↔ B ′′A′′ =⇒ A′ = A′′ ∧ B ′ = B ′′

Invertibility of commutation:

AB ↔ B ′A′ =⇒ B ′A′ ↔ AB

Note that this means that ∼ is an equivalence relation.
3-way permutivitiy of commutation:
If

ABC ↔↑ B ′A′C ↔↑ B ′C ′A′′ ↔↑ C ′′B ′′A′′ ↔↑ C ′′A′′′B ′′ ↔↑ A′′′′C ′′′B ′′ ↔↑ A′′′′B ′′′C ′′′′

Then

A = A′′′′

B = B ′′′

C = C ′′′′

Consistency of failure:
If A ∼ A′, B ∼ B ′, then AB ↔ failimpliesA′B ′ ↔ fail.

3This is another thing that would need to be made explicit in a mechanised proof
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3 Theorems

We start by explicitly writing down some “obvious” properties and constructing
some useful machinery.

Theorem 1. If As ↔↑ Bs, then |As| = |Bs|.
If As ↔∗ Bs, then |As| = |Bs|.

Proof. By induction on the structure of ↔↑ and ↔∗.

We now define the concept of the associated permutation for ↔↑ and ↔∗,
by induction on their structure.

Informally, if p is the associated permutation for As ↔∗ Bs, and Ai occurs
at position i in As, then Ai ends up being commuted into position p(i) in Bs.

If AB ↔ B ′A′, then AB ↔↑ B ′A′ has the associated permutation (1 2).
If As ↔↑ Bs has the associated permutation (n n + 1), then AsC ↔↑ BsC

has the associated permutation (n n + 1).
If As ↔↑ Bs has the associated permutation (n n + 1), then CAs ↔↑ CBs

has the associated permutation (n + 1 n + 2).
Note that by induction, the associated permutation for ↔↑ is always a single

transposition, so this definition makes sense.
As ↔∗ As has the associated permutation id.
If As ↔↑ Bs has the associated permutation p, then so does As ↔∗ Bs.
If As ↔∗ Bs has the associated permutation p and Bs ↔∗ Cs has the

associated permutation q , then As ↔∗ Cs has the associated permutation q�p.
Note that the alphabet for the associated permutation of As ↔↑ Bs or

As ↔∗ Bs is 1 . . . |As|.
Every such commutation has precisely one associated permutation (since it

is defined by induction on the structure of the commutation and we only allow
one derivation for each commutation).

Theorem 2. If As = Ap(1) . . .Ap(n) ↔∗ B1 . . .Bn = Bs has the associated
permutation p, then ∀i .1 ≤ i ≤ n.Ai ∼ Bi . 4

Proof. By induction on the structure of ↔↑ and ↔∗.

Note that the indexing of the patches is somewhat counter-intuitive; nonethe-
less, it is correct. We expect the Ap(i), which is the ith element of As, to
commute into Bp(i), the p(i)th element of Bs.

We now define the concept of a canonical representation of a permutation p.
Such a representation is a sequence of transpositions.

If p = id, the canonical representation of p is the empty sequence.
Otherwise, pick the smallest i such that p(i) 6= i (if no such i existed then

p = id). Let j = p−1(i). The first element of the sequence is (j − 1 j ), and the
remainder of the sequence is the canonical representation of p′ = p � (j − 1 j ).

4It would be nice if the converse were true, i.e. Ap(1) . . .Ap(n) ↔∗ B1 . . .Bn has the
associated permutation p if ∀i .1 ≤ i ≤ n.Ai ∼ Bi . However I think it would require some
kind of stronger property, such as unique patch ids, to make it so.
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Note that j cannot be 1, so this definition is well-formed. [If j = 1, then
i = p(1), so i 6= 1 (otherwise i = p(i)), so p(1) 6= 1, so i is not the smallest for
which this property holds.]

Also, this procedure must terminate, so the canonical representation is finite.
Either:

• p′ = idperm and we terminate

• p′−1(i) = i . Then the new i we will pick for p′ is strictly greater than the
original i for p.

• Otherwise, the new i we will pick for p′ is the same as that for p,5 and
p′−1(i) = p−1(i)− 1.

So either i increases (and is bounded by n) or it stays the same and p−1(i)
decreases.

Theorem 3. If (j − 1 j ) is the first element of the canonical representation of
p, then p(j − 1) > p(j ), and p(j ) < j .

Proof. Let i = p(j ). We know that ∀k .k < i .p(k) = k , and so ∀k .k < i .k =
p−1(k). Also, i 6= p(i).

Clearly, p(j − 1) 6= p(j ).
Suppose p(j − 1) < p(j ). Then p(j − 1) < i , so j − 1 < i , so j < i + 1. If

j = i , then p(i) = j = i , so j < i . But then p(j ) = j < i , which is impossible.
So p(j − 1) > p(j ).
Now suppose j < p(j ). Then p(j ) = j , which is impossible. So p(j ) < j .

We now define the canonical commutation path for a permutation p. Such
a path starts from A′

p(1) . . .A′
p(n) and finishes at A1 . . .An , where the alphabet

of p is 1 . . .n. The path is the same length as the canonical representation of
p, and each ↔↑ step in the path has the corresponding transposition in the
canonical representation of p as its associated permutation.

Informally, one is constructed by first commuting A′
1 to the left of the se-

quence, then commuting A′
2 to the one-but-leftmost position, and so on.

It is not guaranteed that all of these commutes will succeed, so there might
not be any canonical commutation path for any given p and sequence of patches.

By construction, any suffix of a canonical commutation path is also a canon-
ical commutation path (for a different permutation, but the same ending patch
sequence).

Theorem 4. If Bs ↔∗ As is a canonical commutation path for p, then p is the
associated permutation of Bs ↔∗ As.

Proof. Obvious, from the definition of the canonical representation of p and the
construction of the canonical commutation path.

5Need to make this into a theorem and move it below the following theorem so we can use
that
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Theorem 5. If Bs ↔∗ As is a canonical commutation path for p, and Cs ↔∗

As is also a canonical commutation path for p, then Bs = Cs.
If As ↔∗ Bs is a canonical commutation path for p, and As ↔∗ Cs is also

a canonical commutation path for p, then Bs = Cs.

Proof. Since the commutation paths must have the same structure, this follows
from the “Uniqueness of commutation” and “Invertibility of commutation” ax-
ioms. (More formally, by induction on the length of the canonical representation
of p.)

We therefore talk about “the” canonical commutation path for p starting
with or ending with a particular patch sequence.

With all this machinery set up, we can move on to proving some useful
properties.

Theorem 6. Suppose that p is the associated permutation for As ′ ↔∗ As Then
there is a canonical commutation path for p that starts with As ′.

Proof. We use induction on the length of the canonical representation of p.
If p = id, then we are done.
Otherwise, Let As ′ = A′

p(1) . . .A′
p(n), and As = A1 . . .An .

Let (i-1 i) be the first element in the canonical representation of p, and let
j = p(i − 1) and k = p(i), so that A′

j and A′
k are the first patches in As ′ we try

to commute. Recall that j > k .
If A′

jA
′
k ↔ A′′

kA
′′
j , then let As ′′ = A′

p(1) . . .A′
p(i−2)A

′′
kA

′′
j A

′
p(i+1) . . .A′

p(n),
giving As ′ ↔↑ As ′′ as the first step on the canonical commutation path.

Then use the inverse of this commute together with As ′ ↔∗ As to construct
a new path As ′′ ↔∗ As, and apply the induction hypothesis to construct the
canonical commutation path from As ′′ ↔∗ As.

Now suppose that A′
jA

′
k ↔ fail. But we know that j > k , so Ak occurs

before Aj in As.
So somewhere in the path As ′ ↔∗ As, some patches A′′

j and A′′
k must swap

position6, i.e.A′′
j A

′′
k ↔∗ A′′′

k A′′′
j . But this violates our “Consistency of failure”

axiom.

Theorem 7. Suppose:

• As ↔∗ Bs is a canonical commutation path for p

• As ′ ↔↑ As with associated permutation (i − 1 i)

• As ′ ↔∗ Bs ′ is a canonical commutation path for p � (i − 1 i)

• The canonical representation for p � (i − 1 i) is one transposition longer
than that for p

Then Bs = Bs ′.
6This claim really should be formalised
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Proof. Write As as Ap(1) . . .Ap(n) and As ′ as Ap(1) . . .Ap(i−2)A′
p(i−1)A

′
p(i)Ap(i+1) . . .Ap(n).

Write Bs as B1 . . .Bn and Bs ′ as B ′
1 . . .B ′

n .
Let p′ = p � (i − 1 i). Let q be the canonical representation of p and q ′ be

the canonical representation of p′.
Intuitively, q ′ carries out the same sequence of commutations as q , except

that at some point it also has to swap commuted versions of A′
i and A′

i−1, which
is why it is one element longer. Also, Ai−1 and Ai are in the correct order, so
p(i − 1) < p(i). 7

We use induction on the length of q ′.
Consider the first transposition in q ′, (j − 1 j ).
Recall that p′(j − 1) > p′(j ), and that ∀k .k < p′(j ).k = p−1(k) ∧ k = p(k).
We now proceed by case analysis on the value of j .
If j = i , then the “swapping back” happens immediately. The first commu-

tation in As ′ ↔∗ Bs ′ must be As ′ ↔↑ As (by “Uniqueness of commutation”),
so As ↔∗ Bs ′ must be a canonical commutation path for p (since suffixes of
canonical commutation paths are also canonical). So Bs = Bs ′.

Suppose j = i − 1. Then p′(j ) = p′(i − 1) = p(i), and p′(j + 1) = p′(i) =
p(i − 1). Since p(i − 1) < p(i), p′(j + 1) < p′(j ). So p′(j + 1) = j + 1, so
j < j + 1 < p′(j ), so p′(j ) = j , which is impossible.

Now suppose j = i + 1. Then p′(j ) < p′(j − 1) So p(i + 1) = p′(i + 1) <
p′(i) = p(i − 1). Recall also that p(i − 1) < p(i). We also know that p′(j ) < j .
So p(i + 1) < i + 1.

Now, forallk .k < p′(j ).p′(k) = k , so forallk .k < p(i +1).p′(k) = k , and since
p(i + 1) < i + 1, p′(k) = p(k).

Suppose p(i + 1) = i . Then i − 1 < p(i + 1) so p(i − 1) = i − 1. So
p′(i) = i − 1, and p′(i + 1) = i . So p′′(i) = i and p′′(i + 1) = i − 1, and
p′′(i − 1) = p′(i − 1) = p(i).

Now, consider p′′ = p′� (j − 1 j ) = p′� (i i +1). If k < p′′(i) = p′(i +1) =
p(i + 1), then p′′(k) = p(k) = k . Also, p′′(i) = p′(i + 1) = p(i + 1) 6= i . So the
first transposition in the canonical representation of p′′ is (i − 1 i).

First transposition in p is (i i + 1) and second is (i − 1 i). 8

We have that

As ′ = Ap(1) . . .Ap(i−2)A′
p(i)A

′
p(i−1)Ap(i+1)Ap(i+2) . . .Ap(n)

The first commutation gives us

Ap(1) . . .Ap(i−2)A′
p(i)A

′′
p(i+1)A

′′
p(i−1)Ap(i+2) . . .Ap(n).

The next commutation gives us

Ap(1) . . .Ap(i−2)A′′′
p(i+1)A

′′
p(i)A

′′
p(i−1)Ap(i+2) . . .Ap(n).

Call this sequence As ′′′.
7Ought to formalise this paragraph too...
8More rabbits out of hats.
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Now consider

As = Ap(1) . . .Ap(i−2)Ap(i−1)Ap(i)Ap(i+1)Ap(i+2) . . .Ap(n)

The first commutation gives us

Ap(1) . . .Ap(i−2)Ap(i−1)A′′′′
p(i+1)A

′′′
p(i)Ap(i+2) . . .Ap(n).

The next commutation gives us

Ap(1) . . .Ap(i−2)A′′′′′
p(i+1)A

′′′
p(i−1)A

′′′
p(i)Ap(i+2) . . .Ap(n).

Call this sequence As ′′.
Now, by “Consistency of failure”, we can commute A′′

p(i)A
′′
p(i−1) in As ′′ to

give A′′′′
p(i−1)A

′′′′
p(i).

Taking apart the structure of ↔↑ and inverting some of the commutations,
we can construct the commutation path

A′′′′′
p(i+1)A

′′′
p(i−1)A

′′′
p(i) ↔ Ap(i−1)A′′′′

p(i+1)A
′′′
p(i) ↔ Ap(i−1)Ap(i)Ap(i+1) ↔ A′

p(i)A
′
p(i−1)Ap(i+1) ↔ A′

p(i)A
′′
p(i+1)A

′′
p(i−1) ↔ A′′′

p(i+1)A
′′
p(i)A

′′
p(i−1) ↔ A′′′

p(i+1)A
′′′′
p(i−1)A

′′′′
p(i)

By the “Three-way permutivity of commute” axiom, the initial and final
sequences must actually be equal. In other words, As ′′ and As ′′′ are linked
by a single commutation, and we have the canonical paths As ′′ ↔∗ Bs and
As ′′′ ↔∗ Bs ′

We now apply induction on the length of these canonical paths, since they
are shorter than the original ones.

For j > i+1, the first commutation from As ′ gives A1 . . .Ai−1A′
i+1A

′
iAi + 2 . . .Aj−1A′

j+1A
′
jAj+2 . . .An ,

and the first commutation from As gives A1 . . .Ai−1AiAi+1Ai + 2 . . .Aj−1A′
j+1A

′
jAj+2 . . .An ,

and these two are also linked by a single commutation with shorter canonical
paths, so we can apply induction.

A similar argument follows for j < i − 1.

These two results are key. From here, it is a series of short easy steps to
proving an “N-way permutivity” result.

Corollary 1. Suppose:

• As ↔∗ Bs is a canonical commutation path for p

• As ′ ↔↑ As with associated permutation (i i + 1)

• As ′ ↔∗ Bs ′ is a canonical commutation path for p � (i i + 1)

Then Bs = Bs ′.

Proof. The canonical commutation path for p � (i i + 1) must be either one
transposition shorter or one transposition longer than that for p. If it is one
transposition longer, apply the previous theorem. If it is one transposition
shorter, construct the inverse commutation As ↔↑ As ′ and apply the previous
theorem with As,Bs and As ′,Bs ′ reversed.
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Theorem 8. Suppose:

• As ↔∗ Bs is a canonical commutation path for p

• As ′ ↔↑ As with associated permutation (i i + 1)

Then there exists a canonical commutation path As ′ ↔∗ Bs for p � (i i + 1).

Proof. We can construct As ′ ↔∗ Bs with associated permutation p � (i i + 1)
from As ′ ↔↑ As and As ↔∗ Bs. So by an earlier theorem a canonical path
As ′ ↔∗ Bs ′ for this permutation must exist (for some Bs ′). By the previous
corollary, Bs ′ = Bs.

Theorem 9. Suppose:

• As ↔∗ Bs is a canonical commutation path for p

• As ↔∗ As ′ with associated permutation q

Then there exists a canonical commutation path As ′ ↔∗ Bs for p � q−1.

Proof. Invert As ↔∗ As ′ to give As ′ ↔∗ As, and then apply induction on the
structure of As ′ ↔∗ As, along with the previous theorem.

Corollary 2. If As ↔∗ As ′ has associated permutation id, then As = As ′.

Proof. Let p = id and q = id. Then we can trivially construct a canonical
commutation path for p, As ↔∗ As.

Applying the previous theorem, there must be a canonical commutation path
As ′ ↔∗ As for id � id−1 = id, so by an earlier theorem showing uniqueness of
canonical commutation paths, As ′ = As.
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